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Computing and Evaluating Factor Scores

James W. Grice
Oklahoma State University

A variety of methods for computing factor scores can be found in the psychological
literature. These methods grew out of  historic debate regarding the indeterminate
nature of the common factor model. Unfortunately, most researchers are unaware
of the indeterminacy issue and the problems associated with a number of the factor
scoring procedures. This article reviews the history and nature of factor score
indeterminacy. Novel computer programs for assessing the degree of indeterminacy
in a given analysis, as well as for computing and evaluating different types of factor
scores, are then presented and demonstrated using data from the Wechsler Intelli-
gence Scale for Children—Third Edition. It is argued that factor score indetermi-
nacy should be routinely assessed and reported as part of any exploratory factor
analysis and that factor scores should be thoroughly evaluated before they are
reported or used in subsequent statistical analyses.

Exploratory factor analysis is a widely used multi-
variate statistical procedure in psychological research.
Undoubtedly one of its appeals is the ability to com-
pute scores for the individuals in the analysis on the
extracted factors. These novel factor scores can be
used in a wide variety of subsequent statistical analy-
ses. For instance, they can be correlated with mea-
sures of different constructs to help clarify the nature
of the factors or they can be entered as predictor vari-
ables in multiple regression analyses or as dependent
variables in analyses of variance. Factor scores are
also routinely computed as simple sum scores in the
scale development process and are often referred to as
scale, composite, or total scores. Given these varied
uses, it is not surprising that factor scores are common
in the psychological literature.

Computing factor scores is not a'straightforward
process, however, as researchers must choose from a
number of competing computational methods. For ex-
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ample, consider three researchers who conduct an ex-
ploratory common factor analysis on a questionnaire.
Each decides on the same number of factors; uses the
same extraction, rotation, and interpretation proce-
dures; and then decides to compute scores for the
identified factors. The first researcher selects the de-
fault option from his or her favorite computer pro-
gram, resulting in continuous factor scores with
means equal to O and standard deviations close to 1.
The second researcher examines the structure coeffi-
cients (the correlations between the items and the fac-
tors) for salient items using a conventional criterion
such as .30 or .40. The factor scores are then com-
puted by summing the raw or standardized scores for
the items that are deemed salient, much like the pro-
cedures employed in scale construction. The final re-
searcher also uses a simple summing procedure but
selects the salient items from the factor score coeffi-
cient matrix (regression weights for predicting the
factors from the items) rather than from the structure
coefficient matrix. All three researchers will likely
arrive at a different set of factor scores, possibly
yielding widely discrepant rankings of the individuals
along the extracted factors. Which set of factor scores
is most appropriate, and should yet another method
for computing the factor scores have been chosen?
The purpose of the present article is to help research-
ers and practitioners address these important ques-
tions.

It is widely known that decisions made regarding
the various extraction and rotation methods used in an
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exploratory factor analysis can greatly influence the
quality of the results (Comrey, 1978; Fabrigar, We-
gener, MacCallum, & Strahan, 1999). Similarly, the
choice made regarding how factor scores are com-
puted can significantly affect their quality (Grice,
2001; Grice & Harris, 1998) as well as the outcomes
of subsequent analyses in which the scores are used
(e.g., see Morris, 1980). The present article hence
reviews the different methods of computing factor
scores as well as the history of the factor score inde-
terminacy debate that ultimately led to the creation of
the various methods. A number of computer programs
are then presented that provide the necessary tools for
thoroughly evaluating the adequacy of a set of factor
scores. These programs are demonstrated using a
genuine data set from the Wechsler Intelligence Scale
for Children—Third Edition (WISC-III; Wechsler,
1991), and practical implications are finally dis-
cussed.

Historical Review

The common factor model was conceived and de-
veloped as a vehicle of discovery in the early part of
the 20th century. Charles Spearman, Cyril Burt, Louis
Thurstone, and other notable psychologists believed
that this model could be used to isolate and describe
the fundamental categories of human ability. An early
and particularly cogent description of the assumptive
framework underlying the common factor model was
offered by Thurstone (1935):

If abilities are to be postulated as primary causes of
individual differences in overt accomplishment, then the
widely different achievements of individuals must be
demonstrable functions of a limited number of reference
abilities. This implies that individuals will be described
in terms of a limited number of faculties. (p. 46)

The mathematical framework that provided the means
for identifying these yet undiscovered primary cogni-
tive abilities was initially developed by Spearman
(1904) and then expanded by Garnett (1919a, 1919b)
and Thurstone (1931, 1934). A number of important
texts also introduced new methodologies or summa-
rized the emerging mathematical structure and con-
ceptual nature of the common factor model (e.g., Burt,
1940; Holzinger & Harman, 1941; Spearman, 1927,
Thomson, 1939; Thurstone, 1935, 1947). Rotational
procedures, the importance of simple structure, iden-
tification of the correct number of factors to extract,
and the process of labeling factors by examining the
loadings were all introduced in this early period and

are topics familiar to the modern student of factor
analysis. The latter part of the 20th century of course
yielded a prodigious number of analytical and empiri-
cal developments that greatly refined and extended
these early procedures. A number of extraction or
parameter estimation procedures are now readily
available, such as image, principal axis, alpha, or
maximum likelihood factor solutions; the number of
factors to extract can be evaluated according to a scree
plot, parallel analysis, minimum average partial rule,
or one of many other competing methods; rotation can
be accomplished using varimax, quartimax, equamax,
promax, or oblimin transformations, among others;
and the factors can be interpreted on the basis of the
structure, pattern, reference vector, or factor score co-
efficient matrices.

‘What may be unfamiliar to many modern consum-
ers of factor analytic technology, however, is the con-
troversy surrounding the common factor model. As
carly as the 1920s researchers recognized that, even if
the correlations among a set of ability tests could be
reduced to a subset of factors, the scores on these
factors would be indeterminate (Wilson, 1928). In
other words, an infinite number of ways for scoring
the individuals on the factors could be derived that
would be consistent with the same factor loadings.
Under certain conditions, for instance, an individual
with a high ranking on g (general intelligence), ac-
cording to one set of factor scores, could receive a low
ranking on the same common factor according to an-
other set of factor scores, and the researcher would
have no way of deciding which ranking is “true”
based on the results of the factor analysis. As startling
as this possibility seems, it is a fact of the mathemat-
ics of the common factor model. Not surprisingly, the
discovery of factor score indeterminacy threatened the
integrity of Spearman’s g and competing multifactor
theories of cognitive ability, and the ensuing debate
grew fairly heated at times but was ultimately left
unresolved. From the 1930s to the 1970s the issue was
seemingly ignored by the popular purveyors of factor
analytic technology. For example, Thurstone (1935)
discussed procedures for computing factor scores—
almost as a footnote—in the shortest and final chapter
of The Vectors of Mind and made no direct mention of
the indeterminacy debate. Spearman (1932) similarly
made no reference to the debate in the second printing
of The Abilities of Man (Steiger, 1996a). The motives
behind this apparently nonchalant attitude are not
clear. On the one hand, Steiger and Schénemann
(1978) and Steiger (19962) present evidence that sug-
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gests the issue was consciously ignored and perhaps
suppressed. On the other hand, Lovie and Lovie
(1995) argue that Spearman thought the indetermi-
nacy problem had been settled, and Thurstone (1935)
himself admitted that the principal problem of factor
analysis was that of “isolating and identifying primary
factors in a battery of traits” (p. 226)—calculating
factor scores was a secondary concern. Regardless of
the motives, however, the effects on modern practice
have been indisputably negative because modern re-
searchers routinely compute factor scores. These
same researchers appear to be completely unaware of
factor score indeterminacy. Consequently, factor
scores are derived and left unevaluated, and their po-
tentially adverse effects on the results of subsequent
analyses are ignored.

Factor Score Indeterminacy

Several discussions of factor score indeterminacy
are readily available. Steiger and Schénemann (1978)
offer a thorough and readable summary of the prob-
lem, including a straightforward outline of the impor-
tant contributions of Guttman’s (1955) classic article
on the subject. Maraun (1996) offers a concise pre-
sentation of factor score indeterminacy in matrix form
and profiles two contemporary views of the issue, and
Mulaik (1972, 1976) discusses the issue from a geo-
metrical perspective. Given these excellent resources,
indeterminacy will be discussed in a relatively non-
technical fashion here.

A simple look at the common factor model reveals
the essential nature of the problem:

Z,, = FopPirrip ¢y

where n, k, and f indicate the dimensions of the ma-
trices and are equal to the number of observations,
items, and common factors, respectively. Z,; is the
matrix of standardized observed scores, F, ., is an
augmented matrix of common and unique factor
scores, and Pz, is a transposed augmented matrix
of common and unique factor pattern weights. If
P, .1, is an invertible matrix, a unique solution for the
factor scores, F, ), can be found as follows:

Foro = ZulPriony )

The total number of common and unique factors, f +
k, however, will exceed the number of items, k, and
hence Py, is not a square, invertible matrix in the
common factor model. The consequence is that a
unique solution for the factor scores does not exist

becanse the model is attempting to define f + k vari-
ables uniquely by k equations. In essence, one is faced
with a situation in which the number of unknowns
exceeds the number of equations, making an infinite
number of solutions possible. It should be understood
that factor scores can be computed for Equation 2 that
satisfy the stipulations of the common factor model.
For instance, factor scores can be computed that meet
the following criterion for an orthogonal factor solu-
tion (Kestelman, 1952):

Fn(f+k)F ff+k)n"_l = Ly 3

In other words, the factor scores will be standardized
and perfectly orthogonal. The indeterminacy problem
is not that the factor scores cannot be directly and
appropriately computed; it is that an infinite number
of sets of such scores can be created for the same
analysis that will all be equally consistent with the
factor loadings.

What Equations 1, 2, and 3 fail to make explicit,
however, is that factor scores that satisfy Equation 3
can be divided into indeterminate and determinate
portions (Green, 1976; Guttman, 1955; Maraun, 1996;
McDonald, 1974; Mulaik, 1976). The degree of inde-
terminacy will not be equivalent across studies and is
related to the ratio between the number of items and
factors in a particular design (Meyer, 1973; Schone-
mann, 1971). It may also be related to the magnitude
of the communalities (Gorsuch, 1983). Small amounts
of indeterminacy are obviously desirable, and the con-
sequences associated with a high degree of indeter-
minacy are extremely unsettling. Least palatable is the
fact that if the maximum possible proportion of inde-
terminacy in the scores for a particular factor meets or
exceeds 50%, it becomes entirely possible to con-
struct two orthogonal or negatively correlated sets of
factor scores that will be equally consistent with the
same factor loadings (Guttman, 1955). As mentioned
previously, how individuals are ranked along the fac-
tor can therefore be completely different depending
on which set of factor scores is chosen. This effect
also carries over to other variables not included in the
factor analysis, as Steiger (1979) showed that the re-
lationships between indeterminate factor scores and
external criteria are similarly indeterminate (see also
Schonemann & Steiger, 1978). When the degree of
indeterminacy is small, however, the competing sets
of factor scores will all be highly correlated. As the
proportion of indeterminacy approaches 0, wildly dif-
ferent rankings of particular individuals will also be-
come impossible, and the relationships between the
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factor scores and external criteria will grow more de-
terminate.

Factor Score Approximations

The indeterminate nature of factor scores is inex-
tricably tied to the numerous methods that have been
developed for their computation. These methods can
be divided into two general classes (Horn, 1965), and
in practice they yield scores that are only approxima-
tions of the factor scores that would satisfy Equation
3. The first class uses all of the (typically) standard-
ized variables, z;s. For instance, the estimated factor
score on Factor j for Person i can be represented as
follows:

Fi = wpzn + wpZp + ... + WpZie )]

The regression weights, w;s, are multidecimal values
referred to as factor score coefficients. There are a
number of different approaches for obtaining these
weights. Each places a different set of constraints on
the estimated factor scores and seeks to minimize a
particular estimate of error. The most popular solution
is probably Thurstone’s (1935) least squares regres-
sion approach in which the factor score coefficients
are computed from the original item correlations, Ry,
(subscripts represent the dimensions of the matrix),
and structure coefficients, Skf (the correlations be-
tween the factors and the items):

Wy = RSy (5)

The standardized observed scores can then be multi-
plied by the matrix of factor score coefficients, W, to
obtain the estimated factor scores:

an = anwkf' )

The values found in F,,;represent only the determinate
portion of the factor scores, which is maximized in
this instance (conversely, the indeterminate portion is
minimized), and hence will not satisfy the stipulations
of the common factor model fully. For example, the
estimated factor scores will often be intercorrelated
when the factors are orthogonal and they will not have
unit variance.

Additional linear prediction methods were devel-
oped as alternatives to the method shown in Equation
5. Anderson and Rubin (1956; see Gorsuch, 1983)
developed a procedure for estimating factor scores
that are constrained to orthogonality:

Wy = U2, PRUZRLUZPY ™2, (T)

where P, represents the pattern coefficients and Uy, is

a diagonal matrix of the reciprocals of the squared
unique factor weights. This method was generalized
by McDonald (1981) to oblique (i.e., correlated) fac-
tor solutions and developed further by ten Berge,
Krijnen, Wansbeek, and Shapiro (1999):

W,,=Rpz'? Cy @32, where Cy
=Rz Ly (L, Ry L)'/ and Ly
= Pqu’UZ’ (8)

where @ is the factor correlation matrix. This equa-
tion is appropriate even when the covariance matrix
for the unique factors is nonsingular, although in prac-
tice this matrix is assumed to be diagonal. The corre-
lations among estimated factor scores computed from
the weight matrix in Equation 8 are constrained to
match the correlations among the factors themselves.
Bartlett (1937) developed a method that minimizes
the sum of squares for the unique factors across the
range of variables:

Wy = UZP(PLULP) . 9)

Harman (1976) reports the “idealized variable” strat-
egy based on the reproduced correlation matrix rather
than on the original item correlations:

Wy = P Pp) Py (10)

Correlations between the factors and noncorrespond-
ing factor score estimates computed from the weight
matrices in Equations 9 and 10 are constrained to 0
when the factors are orthogonal. The correlations
among the estimated factor scores, however, will not
necessarily match the correlations among the factors,
and the proportion of indeterminacy will not be mini-
mized for either set of factor score estimates.

Several other methods have also been developed
(Heermann, 1963; Ledermann, 1939) that provide lin-
ear approximations of the factor scores using a com-
plex, “refined” W, weight matrix. Previous authors
(e.g., Gorsuch, 1983; Grice & Harris, 1998; Horn,
1965) have referred to this general class of scores as
exact factor scores. In the present article, however,
these estimated factor scores will be referred to as
“refined factor scores.”

The second class of methods involves a simplified
(“coarse”) weighting process. Specifically, the esti-
mated factor score on Factor j for Person i is still of
the form:

k
F;= 21 Wi Zae (11)
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The values for wy;, however, are restricted to simple
unit weights. In other words, the multidecimal regres-
sion weights are replaced by values of +1, -1, and 0;
hence factor scores are estimated by simply adding,
subtracting, or ignoring the (typically) standardized
scores on the original items. The simplified weights
are determined by identifying salient items in the
structure, pattern, or factor score coefficient matrices.
It is common practice, for instance, to conduct an
exploratory factor analysis and examine the structure
matrix for salient values using some conventional cri-
terion (e.g., .30 or .40). Factor scores are then esti-
mated by summing either the observed or standard-
ized scores of those items deemed salient (items with
negative structure coefficients are subtracted rather
than added, and items with nonsalient structure coef-
ficients are ignored). This simple cumulative scoring
scheme is quite popular and can be seen in the index
scores of the WISC-III (Wechsler, 1991), the facet
and domain scores of the Revised NEO Personality
Inventory (Costa & McCrae, 1992), and a host of
other scale and subscale scores for instruments from a
wide variety of domains. Variations on this scoring
strategy include (a) allowing a particular item to con-
tribute only to the score of a single factor, even if it is
salient on several factors, (b) omitting an item that is
salient on more than one factor, and (c) examining the
pattern or factor score coefficient matrices in lieu of
the structure matrix for salient items. These variations
will often lead to different factor score estimates for
the same set of extracted factors. Because each pro-
cedure incorporates a simple cumulative scheme,
however, these types of estimated factor scores will
be referred to as “coarse factor scores” herein.

The refined and coarse factor scoring strategies
grew directly out of the factor score indeterminacy
debate. The former methods were developed to mini-
mize the “damage” incurred from indeterminacy us-
ing several approaches; for example, by maximizing
the correlation between the refined factor scores and
their respective factors (i.e., maximizing the determi-
nate proportion in each set of scores; Thurstone,
1935) or by eliminating the intercorrelations among
the scores for orthogonal factors (Anderson & Rubin,
1956; Heermann, 1963). As alluded to previously,
however, each of these methods suffers from one or
more particular defects (McDonald & Burr, 1967) and
should therefore not be considered to offer a solution
to the indeterminacy problem. The inadequacy of a
particular set of refined factor scores as representa-
tions of the common factors will in fact go completely

unnoticed unless the researcher takes the time to
evaluate their properties.

Coarse factor scoring methods were introduced as
simple and efficient alternatives to the more complex
weighting schemes used to compute refined factor
scores (Cattell, 1952; Thurstone, 1947). Because the
structure coefficients are commonly used to determine
which items are summed, the unit-weighted coarse
factor scores are also believed to be more consistent
with the process of factor interpretation, which is typi-
cally based on the same coefficients. Another attrac-
tive feature of coarse factor scores is their stability
across independent samples of observations relative to
refined factor scores (Grice & Harris, 1998; Wack-
witz & Horn, 1971). Despite these advantages, how-
ever, coarse factor scores suffer from a number of
defects. For instance, they may be highly correlated
even when the factors are orthogonal and they will be
less valid representations of the factors in comparison
with the refined factor scores. Another concern in-
volves basing the coarse factor scores on the structure
coefficients. Two recent Monte Carlo studies (Grice,
2001; Grice & Harris, 1998) suggest that this practice
yields scores that are poor representations of the com-
mon factors. These studies showed that the correla-
tions between the coarse and known factor scores
were generally low when the former were computed
on the basis of the structure coefficients. The coarse
factor scores were greatly improved, however, when
the factor score coefficient matrix was instead used to
determine which items (as well as their signs) to in-
clude in the computations. Use of the structure coef-
ficients appeared to be justified only when the factors
were orthogonal and demonstrated unrealistic simple
structure (Grice & Harris, 1998; Wackwitz & Horn,
1971).

Regardless of how one finally chooses to compute
coarse factor scores, the scores should routinely be
evaluated to detect consequential inadequacies. More-
over, such scores should be evaluated even when they
are derived from the results of a principal-components
analysis or image analysis where the component or
image scores are completely determinate in nature.
Simplified scores computed from either of these
analyses may be highly correlated even when the
components or factors are orthogonal and they may be
relatively inaccurate representations of the very di-
mensions they are meant to quantify. As mentioned
previously, such inadequacies are most likely to
emerge if the structure coefficients are used to deter-
mine which items are salient and how they are to be
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weighted and summed. Simplified scores computed
from principal-components and image analysis as
well as those computed from a traditional common
factor analysis should therefore be routinely evalu-
ated.

Evaluating Factor Score Approximations

Procedures for evaluating factor scores also
emerged from the indeterminacy debate and are
readily available in equation form (Gorsuch, 1983, pp.
272-273; Guttman, 1955; Mulaik, 1976). Unfortu-
nately, these procedures have scarcely made their way
into modern statistical software and have conse-
quently been ignored in practice. Fortunately, leading
analysis packages are extremely flexible, and the nec-
essary procedures can be programmed into their re-
spective languages. Such programs for SAS are pre-
sented and demonstrated below using genuine data
from a recently published study.

Scale scores from the WISC-III (Wechsler, 1991)
for 215 children diagnosed with learning disabilities
served as the example data set (for details, see Grice,
Krohn, & Logerquist, 1999). Consistent with the ini-
tial, exploratory common factor analyses reported in
the WISC-III manual (see pp. 188-194), four factors
were extracted and transformed using an orthogonal
varimax rotation. The resulting structure coefficients
for the 12 subtests (Picture Completion, Information,
Coding, Similarities, Picture Arrangement, Arithme-
tic, Block Design, Vocabulary, Object Assembly,
Comprehension, Symbol Search, and Digit Span) are
reported in Table 1. These values were compared with
the loadings on pages 192 and 193 of the WISC-III
manual yielding congruence coefficients of .95, .95,
.86, and .79 for the verbal, performance, processing
speed, and freedom from distractibility factors, re-
spectively (note that the last two factors switched or-
der in the present sample such that freedom from
distractibility is the fourth factor rather than process-
ing speed). Refined and coarse factor scores can be
computed for each of these factors, although the
WISC-III manual only incorporates the latter and re-
fers to them as index scores.

Refined Factor Scores

A SAS interactive matrix language (IML) pro-
gram was written to conduct the necessary analyses
for evaluating the refined factor scores computed

Table 1
Structure Coefficients for Varimax-Rotated Factors From
the WISC-III

Structure coefficients

Subtest 1 2 3 4
Picture Completion 248 606 164 068
Information 701 148 091 214
Coding -021 137 679* 074
Similarities £695* 211 013 070
Picture Arrangement 256 427 414 071
Arithmetic 274 031 291 510°
Block Design 189 .730° 237 265
Vocabulary 793 217 092 139
Object Assembly 27 735 097 -.057
Comprehension S579* 140 .136 306
Symbol Search 143 198 728 048
Digit Span J32 058 -.019 492°

Note. Salient structure coefficients (=.30) are in bold.

* Corresponding structure coefficients that were salient in the origi-
nal Wechsler Intelligence Scale for Children—Third Edition
(WISC-1II) standardization sample.

from Equations 5 and 6. The unique output for the
WISC-III data is presented in Appendix A. As shown,
the factor score coefficients (W,) are listed first and
are followed by indeterminacy indices: (a) the mul-
tiple correlation between each factor and the original
variables, p, as well as its square, p? (Green, 1976;
Mulaik, 1976), and (b) the minimum possible corre-
lation between two sets of competing factor scores,
2p% — 1 (Guttman, 1955; Mulaik, 1976; Schonemann,
1971). The former index ranges from O to 1, with high
values being desirable, and indicates the maximum
possible degree of determinacy for factor scores that
satisfy Equation 3. Its square, p?, represents the maxi-
mum proportion of determinacy. The second indeter-
minacy index ranges from -1 to +1, and high positive
values are desirable. As discussed previously, when p
< 707 (at least 50% indeterminacy), 2p> — 1 will be
less than or equal to 0, meaning that two sets of com-
peting factor scores can be constructed for the same
common factor that are orthogonal or even negatively
correlated. Values for p that do not appreciably ex-
ceed .71 are therefore particularly problematic. The
results for the first three extracted factors of the
WISC-III (see Appendix A) are all above .80 and

! This program as well as other programs described in
this article can be downloaded from James W. Grice’s Web
site at http://psychology.okstate.edu/facuity/jgrice/
factorscores/.
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seem sufficient, but the 2p® — 1 values are fairly low
and suggest that the best possible factor score esti-
mates may still be too indeterminate. The results for
the fourth factor, freedom from distracﬂ)ility, how-
ever, are clear because p is only .683 and 2p% - 1is
—.066. Such low values indicate that two orthogonal
sets of factor scores could be created that are both
equally consistent with the factor loadings. Therefore,
refined or coarse factor scores should not be estimated
for this factor. High degrees of indeterminacy may
also be an impetus to reexamine the scree plot or
factor-selection criterion and consider extracting
fewer factors (see Schénemann & Wang, 1972).

The p values represent upper bounds on the deter-
minacy of factor score estimates that can be computed
for each of the factors. The refined factor scores that
are actually computed, however, may have lower pro-
portions of determinacy. The validity coefficients re-
ported next in the output (see Appendix A) provide
the means for assessing this possibility. These values
represent the correlations between the factor score es-
timates and their respective factors, and may range
from -1 to +1. They should be interpreted in the same
manner as p described previously. Gorsuch (1983, p.
260) recommends values of at least .80, but much
larger values (>.90) may be necessary if the factor
score estimates are to serve as adequate substitutes for
the factors themselves. In the present example, the
validity coefficients are equal to the ps because the
refined approach in Equation 5 minimizes the propor-
tion of indeterminacy (i.e., it maximizes validity) in
the estimated factor scores. The refined methods in
Equations 8, 9, and 10, however, minimize different
functions and may therefore produce lower validities
that must be scrutinized in relation to p.

Another useful criterion for evaluating factor scores
is univocality, which represents the extent to which
the estimated factor scores are excessively or insuffi-
ciently correlated with other factors in the same analy-
sis. As shown in Appendix A, two matrices, labeled
UNIV and FACTCOR, are to be compared to assess
univocality. The values in the latter matrix are the
interfactor correlations, which are all 0 for the present
set of orthogonal factors. The values in the former
matrix are the correlations between the refined factor
scores (the rows) and the other, noncorresponding
factors in the analysis (the columns). For example,
.082 in the UNIV matrix represents the correlation
between the second factor and the refined factor
scores for the first factor, whereas .080 represents the
correlation between the first factor and the refined

factor scores for the second factor. The values in the
UNIV matrix should match those in the FACTCOR
matrix if the estimated factor scores are univocal. The
results for the WISC-III factors are fairly good be-
cause most values are similar across the two matrices
and the maximum absolute difference is only .170.
These results therefore indicate that the estimated fac-
tor scores are not heavily contaminated by variance
from other orthogonal factors in the same analysis.

The final criterion for evaluating the factor scores is
correlational accuracy, which indicates the extent to
which the correlations among the estimated factor
scores match the correlations among the factors them-
selves.? This criterion can be assessed from the final
two matrices shown in Appendix A. The SCORECOR
matrix represents the correlations among the refined
factor scores, and the FACTCOR matrix again repre-
sents the correlations among the factors. The esti-
mated factor scores reveal superior levels of correla-
tional accuracy when the values in the two matrices
match. In the present example, the correlations among
the refined factor scores compare favorably with the
correlations among the four orthogonal factors ex-
tracted from the current WISC-III data (see Appendix
A). The coefficients for the refined factor scores in the
SCORECOR matrix are generally small, and the larg-
est difference between the two matrices is for the joint
first and fourth factors (r = .191).

In summary, the refined factor scores for the
WISC-III four-factor orthogonal solution were found
to possess several desirable and undesirable charac-
teristics. The multiple correlations, p, appeared ad-
equate for three of the factors, but the 2p* - 1 values
seemed low. These two indeterminacy indices for the

2 The validity coefficients are taken from the diagonal of
R;, a matrix of correlations between the f factors and s
factor scores, which is computed as follows:

R, = SxW, L.}, (12)
where L, is a diagonal matrix of factor score standard

deviations. These values are the square roots of the diagonal
elements of C,, which is computed as follows:

C.. = WiR,W,.. (13)

The off-diagonal elements of R, constitute the values for
univocality (see Gorsuch, 1983, p. 273). The correlational
accuracy values are computed by calculating the Pearson
product-moment correlations among the estimated factor
scores.
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freedom from distractibility factor, however, were
clearly too low. The validity coefficients matched the
p values, and the refined factor scores demonstrated
admirable levels of univocality and correlational ac-
curacy for all four factors; that is, the factor scores
were not overly contaminated with variance from
other orthogonal factors in the same analysis, nor
were they highly correlated with one another.

The factor analysis options of the program de-
scribed previously can be adjusted to derive oblique
factors. Also, the program itself can be slightly modi-
fied to compute refined factor scores on the basis of
Equation 10 rather than on Equation 5. These modi-
fications were made to provide another example of the
process of evaluating indeterminacy, validity, univo-
cality, and correlational accuracy (see Footnote 1).
Four factors were again extracted, but an oblique,
promax transformation was applied to the factors. The
pattern coefficients and factor correlations are pre-
sented in Table 2. The loadings could not be com-
pared to the WISC-III manual because results for
oblique rotations were not reported. It is interesting to
note, however, that the four orthogonal factors from

Table 2
Pattern Coefficients and Factor Correlations for
Promax-Rotated Factors From the WISC-III

Pattern coefficients

Subtest 1 2 3 4
Picture Completion .108 616 013 -014
Information 7390 -038 -.012 062
Coding -146 -019 J750° -.010
Similarities T 059 -084 -.101
Picture Arrangement  .143 328 353 -.049
Arithmetic d15 -112 195 510°
Block Design -.078 J64* 020 231
Vocabulary 864> 018 -013 -055
Object Assembly -.024 822 -062 -.127
Comprehension 553* -.025 .023 .200
Symbol Search 047 -.005 7912 -.093
Digit Span -.035 046 -.168 572%

Factor correlations

1. Verbal —

2. Performance .504 —_

3. Processing speed 373 .508 —

4. FD .556 321 443 —
Note. Salient structure coefficients (=.30) are in bold. FD =
freedom-from-distractibility factor.

® Corresponding structure coefficients that were salient in the origi-
nal Wechsler Intelligence Scale for Children—Third Edition
(WISC-III) standardization sample.

the exploratory analyses were allowed to become cor-
related in the confirmatory factor analyses (see
Wechsler, 1991, pp. 191-195 and p. 281).

The unique output generated by the evaluation pro-
gram for the oblique factors and the refined factor
scores is presented in Appendix B. As shown, the
multiple correlations for the first three factors are
greater than .87 and deemed adequate. The multiple
correlation for the fourth factor, although better than
the corresponding result for the orthogonal factors
reported previously, is marginal (p = .792). The 2p?
- 1 indeterminacy indices are also relatively high
compared with the same values for the orthogonal
factors, but the fourth factor still appears suspect. The
validity coefficients for the refined factor scores com-
pare favorably with the multiple correlations, with the
greatest loss in validity (.734 compared with .792)
occurring for the troubled fourth factor. As stated pre-
viously, only refined factor scores computed using
Equation 5 ensure maximum validity. With respect to
univocality, the scores for the oblique factors are
again sufficient. As can be seen in Appendix B, the
values in the UNIV and FACTCOR matrices are
highly similar. The largest absolute difference is
found for the fourth factor’s correlation with the re-
fined factor scores for the first factor (408 compared
with .556; absolute difference = .148). It is also
worth mentioning that the correlations between the
factors and the refined factor scores arc generally
lower than the correlations among the factors, as re-
vealed by the lower values in the UNIV matrix com-
pared with the FACTCOR matrix. A similar effect
can be seen in terms of correlational accuracy, be-
cause the values in the SCORECOR matrix are less
extreme than the values in the FACTCOR matrix. The
correlational accuracy of the refined factor scores,
however, is sufficient as the SCORECOR and FACT-
COR matrices are highly similar. The largest differ-
ence is found for the correlation between the first and
fourth factors (.374 compared with .556; absolute dif-
ference = .182). On the whole, the refined factor
scores computed using Equation 10 for the oblique
solution are superior to the scores from the orthogonal
solution reported previously, but the scores for the
fourth factor (freedom from distractibility) are still
marginal at best.

Coarse Factor Scores

The method for computing the four index scores
(coarse factor scores) for the WISC-III is based on the
structure -coefficients derived from exploratory factor
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analyses of the original standardization sample. For
example, the Information, Similarities, Vocabulary,
and Comprehension subtests were found to possess
salient, positive structure coefficients (=.30) on the
first factor, labeled as verbal comprehension, for an
orthogonally rotated four-factor solution. Scores on
these subtests are therefore summed to create the
coarse factor score for any given child who completes
the WISC-IIL. Because the subtests are all on the
same scale, it is not necessary to standardize the data
before performing this computation. As stated previ-
ously, the structure coefficients from orthogonal fac-
tors for the present group of children diagnosed with
learning disabilities (see Table 1) match the WISC-1II
standardization sample quite well. Consequently, the
specific procedures for summing the subtest scores
into coarse factor scores found in the WISC-III
manual were initially followed here, and the resulting
scores were assessed using a SAS IML evaluation
program (see Footnote 1).

The novel output generated from this program is
reported in Appendix C. As shown, the matrix of
whole weights used to create the coarse factor scores
is listed first. This matrix is essentially a simplified
factor score coefficient matrix, and examination of its
columns reveals how the items are summed to com-
pute the scores for each factor. For example, scores on
the third factor are computed by summing the Coding
and Symbol Search subtests. Because all of the non-
zero weights are positive, no subtests are subtracted in
the present scoring scheme. The indeterminacy indi-
ces—p, p°, and 2p% — 1—are reported next to provide
a basis of comparison. Validity coefficients for the
coarse factor scores are then listed and compared with
the multiple correlations for the factors. Because the
coarse factor scores entail a loss of information, their
validity coefficients will most assuredly be less than
the ps, and the goal is to achieve as little discrepancy
between the values as possible. The results in Appen-
dix C reveal that the coarse factor scores for the fourth
factor are clearly inadequate (which is necessarily the
case given the low multiple correlation), and the
scores for the second factor compare least favorably
with their respective multiple correlation (difference
= .064). Univocality follows the validity information
and reveals that the coarse factor scores are only mod-
estly contaminated by other orthogonal factors in the
analysis (maximum = .293). The correlational accu-
racy matrix, however, reveals moderate overlap
among several coarse factor scores. The scores on the
second factor, for instance, correlate .457 and 414

with scores on the first and third factors, respectively.
Hence, even though the factors themselves are uncor-
related, several of the coarse factor scores are mod-
erately oblique. In summary, the validity indices re-
veal that the coarse factor scores for the fourth factor
(freedom from distractibility) are clearly inadequate.
Validity coefficients for the first three factors appear
adequate, but attempts to improve the coarse factor
scores for the second factor (i.e., trying different sefs
of weights) might be fruitful. This latter suggestion is
supported by several poor correlational accuracy val-
ues for the second factor.

The method for deriving the unit-weighted, coarse
scoring scheme used in the WISC-III (i.e., determin-
ing how to weight the items on the basis of the struc-
ture coefficients) is common in practice and widely
endorsed in the literature (Alwin, 1973; Gorsuch,
1997; ten Berge & Knol, 1985). Two recent Monte
Carlo studies conducted by Grice and Harris (1998)
and Grice (2001), however, suggest that the simplified
scoring scheme should be based on the factor score
coefficients instead. These coefficients are designed
explicitly for determining the relative spacings of the
individuals on the factors and are computed using
least squares methods that can maximize the determi-
nate nature of the estimated factor scores (viz., Equa-
tion 5), whereas the structure coefficients simply rep-
resent the correlations between the items and the
factors. The relative values in these two matrices will
typically correspond when ideal simple structure is
obtained, which is certainly the exception rather than
the rule in practice. It is therefore entirely possible
that using the structure coefficients to determine item
saliency for scoring one’s factors may result in coarse
factor scores that have poor validity, univocality, and
correlational accuracy. This potentiality may explain
the poor performance of the coarse scores for the sec-
ond factor described previously relative to the first
and third factors.

A SAS IML program was written that provides the
means for selecting salient items from the factor score
coefficients (see Footnote 1). The output generated
from this program for the current WISC-III data is
reported in Appendix D. As shown, the factor score
coefficients for the first factor are initially ranked in
descending order. These ranked values are then plot-
ted in a two-dimensional graph with the abscissa com-
prising the ranks and the ordinate comprising the fac-
tor score coefficients. As can be seen in the top panel
of Figure 1, the resulting graph is similar to a scree
plot. A clear break in the graph is present that sepa-
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Figure 1. Plots of ranked factor score coefficients (Equation 5) for first and second or-
thogonal factors. Abbreviations for subtests are as follows: VOCABU = Vocabulary;
SIMILA = Similarities; INFORM = Information; COMPRE = Comprehension; PICARA
= Picture Arrangement; SYMBOL = Symbol Search; PICCOM = Picture Completion;
ARITHM = Arithmetic; DIGITS = Digit Span; OBJECT = Object Assembly; CODING =
Coding; BLOCKD = Block Design.
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rates Vocabulary, Similarities, Information, and Com-
prehension from the remaining subtests on the first
factor. Moreover, a second break in the graph reveals
a particularly extreme negative factor score coeffi-
cient for Block Design. The coarse factor scores are
hence computed by summing Vocabulary, Similari-
ties, Information, and Comprehension, and subtract-
ing Block Design. This method differs from the origi-
nal scoring procedure reported in the WISC-III
manual by including the Block Design subtest. The
graph of ranked factor score coefficients for the sec-
ond factor is presented in the bottom panel of Figure
1 and reveals that the coarse factor scores should be
computed by summing Block Design, Object Assem-
bly, and Picture Completion. Unlike the original scor-
ing procedure, the Picture Arrangement subtest is not
included for the second factor. It should also be noted
that although Picture Arrangement shows slight sepa-
ration from Similarities in the graph, its absolute
value is similar to Arithmetic, which shows virtually
no separation from Symbol Search and a number of
other subtests. Including Picture Arrangement would
therefore justify including these other negatively
weighted subtests as well. As with interpreting a tra-
ditional scree plot, a degree of subjectivity is obvi-
ously involved. Unlike a scree test, however, the re-
searcher can use the evaluation program described
previously to assess the adequacy of the coarse factor
scores and make adjustments if necessary. According
to the scree-type plot for the third factor (not shown),
coarse factor scores are computed from the Coding
and Symbol Search subtests, which matches the origi-
nal scoring scheme. Coarse factor scores for the
fourth factor are computed by summing the Arithme-
tic, Block Design, Comprehension, and Digit Span
subtests, and subtracting the Object Assembly subtest.
In the original scoring scheme, only the Arithmetic
and Digit Span subtests are summed. It is interesting
to note that the troubled fourth factor produced a plot
(not shown) that did not reveal clear separation among
the factor score coefficients, which more than doubled
the number of subtests used to estimate the factor
scores.

Standard errors and t values for the factor score
coefficients are also listed in the output (see Appendix
D).> A common criticism against least squares regres-
sion weights (e.g., see Gorsuch, 1997) is the potential
for wildly different standard errors that would obscure
the interpretation of their relative magnitudes. Basing
the coarse factor scoring scheme on such coefficients
would therefore be risky business. The results for this

particular data set, however, reveal that the standard
errors within each factor are fairly homogeneous, and
the most extreme ¢ values correspond to the most
extreme factor score coefficients. For example, the
Picture Completion (5.57), Block Design (10.53), and
Object Assembly (9.84) subtests clearly have the most
extreme ¢ values (listed in parentheses) for the second
factor. The ¢ value for Picture Arrangement (2.23) on
the second factor was not unusual, justifying its ex-
clusion from the coarse factor scores. Hence, the stan-
dard errors and ¢ values support the weighting
schemes for computing the factor scores derived from
the graphs in Figure 1. The output concludes with the
total contribution of each item (WISC-III subtest) to
the squared multiple correlation, p?, for each factor.*
The factor score coefficients represent the direct con-
tribution of each item to pZ, whereas the numbers in
this final matrix include both direct and indirect ef-
fects. These values can consequently be examined to
determine whether additional items need to be in-
cluded in the computation of the coarse factor scores.
In this data set, the largest values correspond to the
largest factor score coefficients for each factor, and
hence no additional items are deemed necessary.
These new coarse factor scores based on the factor
score coefficients for the orthogonal four-factor solu-
tion were evaluated using the program described pre-
viously. The results are reported in Appendix E and
can be compared with the original output based on the
structure coefficients in Appendix C. This comparison
reveals that the validity coefficients for the first and
second factors were improved by the adjustments.
The first factor increased from .852 to .864 (p =
.886), and the second factor improved from .801 to
.831 (p = .865). The new coarse factor scores for the
beleaguered fourth factor, however, showed little im-
provement (.627 to .629), although the changes were

3 The standard error for the factor score coefficient of
Item i and Factor j was computed as follows:

sey = (r{l = RHIN - k - 1)'2, (14)

where r,, is the ith main diagonal entry of the inverse of the
item correlation matrix, R} is the squared validity coeffi-
cient for Factor j (not p?), N is the total number of obser-
vations, and k is the number of items (see Harris, 1985b,
p. 65).

“ The total direct and indirect contributions to the squared
multiple correlations for the factors were computed using
element-wise multiplication of the structure and factor score
coefficient matrices.
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in vain given the already inadequate muitiple corre-
lation (p = .683). The validity coefficient for the third
factor did not change because the scoring schemes
based on the structure and factor score coefficients
were equivalent in this case. Comparison of the univ-
ocality matrices in Appendices E and C also reveal
improvement, as values in the former Appendix are
generally closer to the comparison matrix of zeros. In
other words, the new coarse factor scores are less
contaminated by other factors in the same analysis.
The exception to this general improvement involves
the fourth factor. The new coarse factor scores show
more contamination from the fourth factor than from
the original scores. This result is not completely sur-
prising, however, given that two of the three items
added to this factor are shared by other factors in the
analysis. Finally, a comparison of the correlational
accuracy matrices across Appendices E and C again
shows improvement for the correlations involving
only the first three factors and a decrement in perfor-
mance for the fourth factor. The correlations among
the new coarse factor scores for the first three factors
resembles the comparison matrix (in this case, an
identity matrix) more closely than the original coarse
factor scores.

In summary, the coarse factor scores based on the
factor score coefficients revealed superior levels of
validity, univocality, and correlational accuracy for
the first three factors compared with the original
scores based on the structure coefficients. The coarse
factor scores for the fourth factor showed a slight
improvement in validity but decrements in univocality
and orthogonality. It should be kept in mind, however,
that the fourth factor was retained in all of the analy-
ses to provide a thread of consistency throughout the
examples. It was therefore retained solely for peda-
gogical reasons. Given all of the results stated previ-
ously for both the refined and coarse factor scoring
methods, a more appropriate strategy may have been
to reconduct the factor analyses and extract only three
factors, or retain four factors and apply an oblique
transformation. Even with oblique factors, the fourth
factor was marginal, as revealed by its indeterminacy
indices, and the best alternative may consequently be
its exclusion.

Discussion

Factor scores computed from the common factor
model are indeterminate in nature. For any single
common factor, an infinite number of sets of scores
can be derived that are equally consistent with the

factor loadings. Under particular circumstances, com-
peting sets of scores for the same factor can actually
be orthogonal or negatively correlated, thus yielding
completely different rankings of the individuals. This
inherent indeterminacy creates both conceptual
(Steiger & Schénemann, 1978) and empirical
(Schénemann & Steiger, 1978; Steiger, 1979) diffi-
culties for the factor analyst that should not be ig-
nored. Indeterminacy has also led to a large number of
methods for estimating factor scores, some of which
appear to be defective. In other words, not all means
of calculating factor scores are adequate; hence, even
if highly determinate factor scores can be created for
a given set of results, the researcher may still choose
a method that is severely flawed (e.g., summing stan-
dardized scores on the basis of salient structure coef-
ficients). The foregoing procedures and computer pro-
grams were specifically designed to provide
researchers with the knowledge and tools necessary
for effectively addressing, rather than neglecting, the
issues surrounding the computation of factor score
estimates. The structure and style by which this in-
formation was presented was intentionally pedagogi-
cal, introducing and demonstrating procedures and
criteria for evaluating factor scores that are unknown
to a vast majority of researchers and consumers of
factor analytic technology. A number of different
questionnaires, inventories, or ability tests other than
the WISC-III (Wechsler, 1991) could certainly have
been chosen for this purpose, as the evaluative com-
puter programs were designed for maximum flexibil-
ity. Large numbers of items and factors, different fac-
tor extraction algorithms, and orthogonal or oblique
factor transformations can all be managed by the com-
puter programs reported in this article.

Choosing the WISC-III for the previously de-
scribed demonstrations, however, proved fortuitous
for a number of reasons. First, it is a widely used
assessment tool in psychology and education and is
therefore familiar to a large and diverse audience of
readers. Second, it possesses a number of manageable
items (subtests) that could be displayed and discussed
efficiently. Finally, and most importantly, a good deal
of controversy surrounds the validity of the four-
factor solution reported in the test manual. Some re-
searchers have argued that a two- or three-factor so-
lution provides superior fit to the extant data,
directing most of their criticism toward the freedom
from distractibility factor (Kamphaus, Benson, Hutch-
inson, & Platt, 1994; Kush & Watkins, 1994; Sattler,
1992). The results reported previously may therefore
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be interpreted in light of a genuine measurement con-
troversy, further exhibiting the importance of factor
score indeterminacy. Viewed in this light, the freedom
from distractibility factor was clearly inadequate. Its
multiple correlation, p, was less than .707, and the
minimum correlation among competing sets of factor
scores, 2p® — 1, was —.066. Because the multiple cor-
relation was low, the validity coefficient for the
coarse factor scores (index scores) was necessarily
low as well. Applying an oblique transformation to
the extracted factors improved the multiple correla-
tion (p = .792), but it was still inadequate.

In a recent article, Fabrigar et al. (1999) offered a
number of recommendations to aid researchers with
the various decisions that must be made when con-
ducting an exploratory factor analysis (EFA). Sadly,
they did not recommend evaluating factor score inde-
terminacy or the adequacy of one’s computed factor
score estimates. The example reported previously for
the WISC-III, however, demonstrates clearly the ne-
cessity for incorporating such evaluations into any
EFA. Even if the researcher will not finally compute
factor scores for his or her data, the maximum pro-
portion of determinacy for each factor, p?, should at
least be reported along with the eigenvalues, rotation
method, and structure or pattern coefficients that are
routinely published. SAS reports p if the factor score
coefficients are requested, and SPSS reports p for or-
thogonal factors if factor scores from Equation 5 (la-
beled as regression factor scores in the program) are
requested. None of the commercial programs, how-
ever, provide the means for computing factor scores
from Equations 5, 8, 9, and 10. For instance, SAS
allows one to compute refined factor scores using
Equation 5, and SPSS provides options for computing
refined factor scores from Equations 5, 7, and 9. The
necessary tools for evaluating refined as well as
coarse factor scores in terms of validity, univocality,
and correlational accuracy are not available. More-
over, although most major programs provide the
structure, pattern, and factor score coefficients from
Equation 5, they do not provide the graphical dis-
plays, ¢ values, and standard errors for the factor score
coefficients, W,, nor do they provide the combined
direct and indirect contributions of each item to p2.
The programs reported in this article should therefore
prove vital to EFA researchers for constructing and
evaluating factor score estimates as well as the degree
of indeterminacy in their analyses.

If factor scores are computed for a particular set of
results, or a method of computing factor scores is

provided for future researchers using the same instru-
ment (e.g., as in scale construction), then information
regarding the validity, univocality, and correlational
accuracy of the factor score estimates should be re-
ported. Validity represents the extent to which the
factor score estimates correlate with their respective
factors in the sample, and values approaching 1.00 are
desirable. Low validity will likely reduce the statisti-
cal power of subsequent decisions based on the factor
scores because a large proportion of their variance
may be random in nature. Validity must also be
judged, however, within the context of univocality
and correlational accuracy because a small decrement
in the former index may correspond with substantial
losses in the latter indices. As a consequence, the
factor score estimates may become overly saturated
with variation from other factors and factor score es-
timates in the same analysis. Such an outcome could
confound the process of interpreting the relationships
between factor score estimates for a particular factor
and external criteria. For example, consider a re-
searcher who extracts two orthogonal factors, labels
them as depression and hostility, uses a scoring
method that produces highly correlated factor score
estimates, and then fails to evaluate the scores for
validity, univocality, and correlational accuracy. Sub-
sequent analyses will all be interpreted in light of
orthogonal factors, even though the factor score esti-
mates themselves are not independent. All three
evaluative criteria should therefore be carefully ex-
amined and reported as standard output of any EFA.

When factor scores are computed and evaluated, a
choice between refined or coarse factor score esti-
mates must be made. Refined factor scores will typi-
cally have superior levels of validity compared with
their coarse counterparts for a given sample, and par-
ticular constraints, such as orthogonality for uncorre-
lated factors, can be placed on these scores. Conse-
quently, if one wishes to employ a complex weighting
scheme that uses all of the items, the refined factor
scores would be suitable. The researcher will have to
decide, however, what constraints are to be employed.
Table 3 serves as a quick summary of the different
properties of the factor score estimates generated from
Equations 5, 8, 9, and 10. As shown, each method
fails to meet all three criteria, and the methods in
Equations 9 and 10 only ensure univocality when the
factors are orthogonal. Some authors have addition-
ally argued that the purposes for which factor scores
are to be used should be included in one’s choice. For
example, Tucker (1971) showed analytically that the
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Table 3
Properties of Different Methods for Estimating Refined
Factor Scores

Univocal for
Method Maximizes  orthogonal  Correlation
(Equation no.) validity factors preserving
5 Yes No No
8 No No Yes
9 No Yes No
10 No Yes No

method in Equation 5 should be preferred when the
estimated factor scores are to be entered into subse-
quent regression analyses. This suggestion, however,
was not supported when tested in an empirical study
(Lastovicka & Thamodaran, 1991). Skrondal and
Laake (in press) further argued that if regression
analyses are used in lieu of structural equation models
with latent variables, a modified type of blockwise
factor score regression should be employed. Specifi-
cally, factor scores for latent explanatory (predictor)
variables should be computed from Equation 5,
whereas factor scores for latent response (criterion)
variables should be computed from Equations 9 or 10.
Future research should add to this store of knowledge
in helping to direct researchers in their choice of the
refined factor scoring methods.

Coarse factor scores are extremely popular in the
literature and go by different names, such as scale
scores, index scores, cluster scores, and sum scores.
Although some authors may object to naming such
quantities factor scores (e.g., see Thorndike, 1978, p.
321), the values are intended to provide the rankings
of the individuals on the identified factors in the
analysis. As such, they are justifiably called factor
scores (estimates) and are generally believed to be
simple, effective, and stable alternatives to the refined
methods. They are also considered to be more con-
sistent with the process of factor interpretation, which
is based on an examination of subsets of items in the
analysis. As discussed previously, these beliefs may
be well founded as long as the researcher is willing (a)
to avoid using the structure coefficients as the basis
for selecting salient items to include in the coarse
factor scores and (b) to examine these scores using the
procedures and programs provided in this article. As
shown previously, the coarse factor scores for the sec-
ond factor from the WISC-III were greatly improved
when salient items were selected on the basis of factor
score coefficients, ka. These coarse factor scores
were more valid and showed superior levels of uni-

vocality and correlational accuracy compared with
similar scores based on the structure coefficients, S,,f.
A number of criteria can be used when selecting items
from the W, matrix. Scree-type plots of the factor
score coefficients for each factor can be examined to
determine which items yield the most extreme values,
as well as their signs. The ¢ values and standard errors
for the factor score coefficients can also be examined,
and the former values can be evaluated for statistical
significance. The total contribution of each item to p?
is also provided and can be incorporated in the deci-
sion process. Certainly, all of this information can be
used to select the items that will finally be summed
into the coarse factor scores, and several versions of
estimated factor scores can be attempted and evalu-
ated in the early stages of an exploratory factor analy-
sis. It should also be mentioned that differential
weighting strategies can be used. For instance, items
with extreme factor score coefficients may be
weighted by a factor of two. In essence, a slightly
more complex weighting scheme (=2, -1, 0, 1, 2) is
used rather than the more common, simple scheme
(-1, 0, 1). Rozeboom (1979) argued that a complex
strategy is most likely to be fruitful when the items are
heterogeneous in nature (i.e., they tend to load on
more than one factor) and few in number. Regardless,
the final coarse factor scores should be assessed with
respect to their validity, univocality, and correlational
accuracy.

Coarse factor scores are often computed from the
results of principal-components and image analyses.
Even though refined factor scores from such analyses
are determinate in nature, the coarse scores may still
suffer from poor validity, univocality, and correla-
tional accuracy. As mentioned previously, inadequate
component or image scores are likely to be derived
when one uses the structure coefficients rather than
the factor score coefficients to select salient items to
include in the coarse scores (see Halperin, 1976). One
exception to this prescription, however, is the case of
an unrotated principal-components analysis in which
the factor score coefficients are a simple function of
the structure coefficients and eigenvalues. Namely,
W, is computed by dividing the elements in §;, by
their respective eigenvalues (Kaiser, 1962). The rela-
tive magnitudes of the two matrices will therefore be
equivalent, and the same items to include in the coarse
factor scores will be selected. Once the principal com-
ponents are transformed orthogonally or obliquely,
discrepancies in the relative magnitudes of the W,
and S;, matrices can emerge. Consequently, radically
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different coarse factor scores can be derived (Harris,
1985a, 1985b). Because the factor score coefficients
are designed specifically for scoring the components,
and the structure coefficients represent the correla-
tions between the components and the items, the
former values will yield coarse factor scores that have
superior levels of validity, univocality, and correla-
tional accuracy compared with the latter.

In conclusion, many early psychologists believed
that the common factor model and exploratory factor
analytic techniques would help shape our understand-
ing of human abilities and individual differences.
Support for these beliefs can indeed be seen in mod-
ern theories of intelligence, personality, and self-
esteem, to name only a few domains or constructs that
have been modeled with factor analysis. Critics have
argued, however, that factor score indeterminacy se-
riously hinders the effectiveness of the common factor
model and may in fact render it misleading (e.g., see
Schonemann, 1997; Schénemann & Wang, 1972;
Steiger, 1996b) or even meaningless (see Schéne-
mann & Steiger, 1978). The question posed by most
critics is: Of what scientific value is a common factor
if the researcher cannot score the individuals in an
unambiguous fashion along the identified dimension?
For instance, imagine a measure of temperature that
has a high degree of factor score indeterminacy. Two
researchers could use such a measure to derive com-
pletely different rankings, both equally valid, of the
temperatures in the rooms of their buildings. It is dif-
ficult to imagine that such a measure would be
deemed as adequate or would propel the science of
temperature forward. Yet, this is exactly the issue fac-
ing psychologists who use exploratory factor analysis
techniques and fail to evaluate factor score indetermi-
nacy or their estimated factor scores. Thurstone’s
(1935) attempt to separate the factor identification and
scoring processes may be at the root of this dilemma,
but as Steiger (1996a) recently wrote, “If we wish to
continue using models with more latent than observed
variables, we need to discuss and develop methods for
the measurement and evaluation of factor indetermi-
nacy, so that the problem is properly controlled” (p.
619). The present article provides researchers and
practitioners with these much needed methods.
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Appendix A

Output for Four Orthogonal Factors From Refined Factor Score Evaluation Program (Equation 5)

#*+* BEGIN OUTPUT FROM PROC IML ****
Factor Score Coefficients for Items/Factors

ITEM FSCOEF
PICCOM 0000 0219 -0.021 -0.037
INFORM 0262 -0062 -0.018 0.053
CODING  -0.063 -0.054 0.382 -0.008
SIMILA 0269 0.001 -0.062 -0.107
PICARA 0.018 0.086 0.144 -0.051
ARITHM  -0012 -0.091 0.091 0.382
BLOCKD -0.149 0465 -0.037 0.275
VOCABU 0464 -0.047 -0.036 -0.100
OBIJECT -0.046 0393 -0.080 -0.167
COMPRE 0.144 -0.050 0.005 0.156
SYMBOL 0.002 -0.068 0502 -0.102
DIGITS -0.044 -0.010 -0.059 0.334

Indeterminacy/Determinacy Indices
(Multiple R, R-Squared, and Minimum Correlation)

FACTOR MULTR RSQR MINCOR
1 0.886 0.786 0.572
2 0.865 0.748 0.495
3 0.829 0.687 0.373
4 0.683 0.467 -0.066
Validity Coefficients
FACTOR VALID MULTR
1 0.886 compare to MULTR — 0.886
2 0.865 0.865
3 0.829 0.829
4 0.683 0.683
Univocality
(Rows = Factor Scores/Columns = Factors)
UNIV FACTCOR
— 0082 0.017 0.170 compare to FACTCOR — — 0,000 0.000 0.000
0.080 -— 0.110 0.042 0.000 —_ 0.000 0.000
0.016 0.105 —_ 0.091 0.000 0.000 — 0.000
0.131 0.033 0.075 — 0.000 0.000 0.000 —_



Correlational Accuracy

SCORECOR
1.000 —
0.093 1.000
0.019 0.127
0.191 0.048

EVALUATING FACTOR SCORES

compare to FACTCOR —»

1.000 —
0.109 1.000

Appendix B

FACTCOR
1.000 —
0.000 1.000
0.000 0.000
0.000 0.000

1.000
0.000
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1.000

Output for Four Oblique Factors From Refined Factor Score Evaluation Program (Equation 10)

***xx BEGIN OUTPUT FROM PROC IML, *#%¥*
Factor Score Coefficients for Items/Factors

ITEM
PICCOM 0.042
INFORM 0.324
CODING  -0.049
SIMILA 0.342
PICARA 0.067
ARITHM 0.043
BLOCKD  -0.048
VOCABU 0.381
OBJECT -0.018
COMPRE 0.239
SYMBOL 0.039
DIGITS -0.033

FSCOEF
0.348 0.001 -0.023
-0.029 0010  0.068
-0.021 0.539 0.041
0027 -0.053 -0.165
0.179 0250 -0.048
-0.069 0.180 0.718
0.433 0.017 0.322
0.001 0.003 -0.098
0467 -0.066 -0.182
-0.021 0.042 0.266
-0.015 0567 -0.076
0.027 -0.084 0.783

Indeterminacy/Determinacy Indices
(Multiple R, R-Squared, and Minimum Correlation)

FACTOR MULTR RSQR MINCOR
1 0.929 0.862 0.724
2 0911 0.830 0.660
3 0.876 0.768 0.536
4 0.792 0.627 0.253
Validity Coefficients
FACTOR VALID MULTR
1 0.920 compare to MULTR — 0.929
2 0.898 0911
3 0.862 0.876
4 0.734 0.792
Univocality
(Rows = Factor Scores/Columns = Factors)
UNIV
— 0453 0322 0.408 compare to FACTCOR —
0.464 — 0438 0.236
0343 0456 — 0.325
0511 0288 0.382 —
Correlational Accuracy
SCORECOR
1.000 — — — compare to FACTCOR —
0418 1.000 — —
0.304 0390 1000 —
0.374 0.196 0.299 1.000

(Appendixes continue)

FACTCOR
— 0.505
0.505 —
0.373 0.508
0.556 0321
FACTCOR
1.000 —
0.505 1.000
0.373 0.508
0.556 0.321

0.373
0.508

0.443

1.000

0.443

0.556
0.321
0.443

1.000
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Appendix C

Output for Four Orthogonal Factors From Coarse Factor Score Evaluation Program

*#***x BEGIN OUTPUT FROM PROC IML ****
Simplified Weights for Items/Factors

ITEM
PICCOM
INFORM
CODING
SIMILA
PICARA
ARITHM
BLOCKD
VOCABU
OBJECT
COMPRE
SYMBOL
DIGITS

CO=RO P OO0 =0 —=O

FSCOEF
1 0
0 0
0 1
0 0
1 0
0 0
1 0
0 0
1 0
0 0
0 1
0 0

Indeterminacy/Determinacy Indices
(Multiple R, R-Squared, and Minimum Correlation)
RSQR
0.786
0.748
0.687
0.467

FACTOR MULTR
1 0.886
2 0.865
3 0.829
4 0.683

Validity Coefficients

FACTOR VALID MULTR
1 0.852 compare to MULTR — 0.886
2 0.801 0.865
3 0.805 0.829
4 0.627 0.683
Univocality
(Rows = Factor Scores/Columns = Factors)
UNIV
— 0263 0.070 0.254 compare to FACTCOR —
0.220 — 0.192 0.056
0.102  0.293 — 0.170
0224 0.111 0.070 —
Correlational Accuracy
SCORECOR
1.000 — — — compare to FACTCOR —
0.457 1000 — —
0.200 0414 1.000 —
0.388 0227 0211 1.000

—OOO0OO0OQOCRLOOOOO

MINCOR
0.572
0.495
0.373

-0.066

Appendix D

FACTCOR

0.000
0.000
0.000

FACTCOR

1.000
0.000
0.000
0.000

0.000
— 0.000

0.000 —

0.000

0.000

0.000

1.000 —
0.000 1.000
0.000 0.000

0.000
0.000
0.000

1.000

Output for Four Orthogonal Factors From Program for Creating Coarse Factor Scores (Equation 5)
**** BEGIN OUTPUT FROM PROC IML *¥#**

Ranked Factor Score Coefficients: Factors 1
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ITEM RANKCOEF

VOCABU 0.464

SIMILA

INFORM 0.262

COMPRE 0.144

PICARA 0.018

SYMBOL 0.002

PICCOM 0.000

ARITHM -0.012

DIGITS -0.044

OBJECT ~0.046

CODING -0.063

BLOCKD -0.149

Standard Errors and t-values for Factor Score Coefficients
ITEM ERRORS T_VALUES

PICCOM 0.036 0.039 0.044  0.057 0.004 5.574 -0.484  -0.650
INFORM 0.039  0.043 0.048 0.062 6.662  -1.447 -0.383 0.850
CODING 0034  0.037 0042 0.054 -1.828 -1.452 9.178  -0.154
SIMILA 0.038 0.041 0046  0.060 7.117 0.032 -1.365 -1.792
PICARA 0036  0.039 0.043  0.056 0.508 2.225 3323 -0.911
ARITHM 0.033 0.036 0.040  0.053 -0.351 -2.514 2270 7.271
BLOCKD 0.041 0.044 0049  0.064 -3.658 10.535 -0.743 4.287
VOCABU 0.042 0.046 0.051 0.067 10.952 -1.021 -0.697  -1.502
OBJECT 0.037 0040 0.044  0.058 -1.243 9.843 -1.810  -2.888
COMPRE 0.036 0.040 0.044  0.058 3.951 -1.269 0.115 2.715
SYMBOL 0.036 0.039 0.044  0.057 0.063 ~-1.743 11.528 -1.794
DIGITS 0030 0.033 0.037 0048 -1.452  -0.292 -1.605 6.962

Total Item Contribution to Squared Multiple Correlation

ITEM CONTRIB
PICCOM 0.000 0.133  -0.003  -0.003
INFORM 0.184 -0.009  -0.002 0.011
CODING 0.001 ~0.007 0.259  -0.001
SIMILA 0.187 0.000 -0.001 -0.008
PICARA 0.005 0.037 0.060 -0.004

ARITHM -0.003 -0.003 0.027 0.195
BLOCKD -0.028 0340  -0.009 0.073
VOCABU 0.368 -0.010 -0.003 -0.014
OBJECT -0.006 0280  -0.008 0.010
COMPRE 0.083 -0.007 0.001 0.048
SYMBOL 0.000- 0.013 0365  -0.005

DIGITS -0.006 -0.001 0.001 -0.164
TOTALS 0.786 0.748 0.687 0.467
Appendix E

Output for Four Modified Orthogonal Factors From Coarse Factor Score Evaluation Program

**** BEGIN OUTPUT FROM PROC IML *#***
Simplified Weights for Items/Factors

ITEM FSCOEF
PICCOM 0 1 0 0
INFORM 1 0 0 0
CODING 0 0 1 0
SIMILA 1 0 0 0

(Appendixes continue)
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PICARA 0 0 0 0
ARITHM 0 0 0 1
BLOCKD -1 1 0 1
VOCABU 1 0 0 0
OBJECT 0 1 0 -1
COMPRE 1 0 0 1
SYMBOL 0 0 1 0
DIGITS 0 0 0 1
Indeterminacy/Determinacy Indices
(Multiple R, R-Squared, and Minimum Correlation)
FACTOR MULTR RSQR MINCOR
1 0.886 0.786 0.572
2 0.865 0.748 0.495
3 0.829 0.687 0.373
4 0.683 0.467 —0.066
Validity Coefficients
FACTOR VALID MULTR
1 0.864 compare to MULTR — 0.886
2 0.831 0.865
3 0.805 0.829
4 0.629 0.683
Univocality
(Rows = Factor Scores/Columns = Factors)
UNIV
— 0226 0.070 0.404 compare to FACTCOR —
-0.005 — 0.192  0.087
0.032  0.200 — 0.211
0.155 0.111 0.070 —
Correlational Accuracy
SCORECOR
1.000 — — — compare to FACTCOR —
0.176 1.000 — —
0.096 0345 1.000 —

0.484 0252 0.260 1.000

FACTCOR
— 0.000

0.000 —_
0.000 0.000
0.000 0.000
FACTCOR

1.000 —_—

0.000 1.000

0.000 0.000

0.000 0.000

0.000 0.000
— 0.000

0.000 —
1.000 —

0.000 0.000 0.000 1.000
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