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1. Introduction

Psychologists debate whether mental attributes can be quanti-
fied or whether they admit only qualitative comparisons of more
and less. Their disagreement is not merely terminological, for it
bears upon the permissibility of various statistical techniques
(Cp. Stevens, 1951, 25ff.; Lord, 1953). This article contributes to
the discussion in two stages. First it explains how temperature,
which was originally a qualitative concept, came to occupy its
position as an unquestionably quantitative concept (§§1–4). Spe-
cifically, it lays out the circumstances in which thermometers,
which register quantitative (or cardinal) differences, became dis-
tinguishable from thermoscopes, which register merely qualitative
(or ordinal) differences. I argue that this distinction became possi-
ble thanks to the work of Joseph Black, ca. 1760. Second, the article
contends that the model implicit in temperature’s quantitative sta-
tus offers a better way for thinking about the quantitative status of
mental attributes than models from measurement theory (§§5–6).

Mental attributes, like intelligence and aggressiveness, have
degrees that can be ordered. Psychologists have taken these ordinal
characteristics as a sign that mental attributes are quantitative.
Michell, a critic of psychological measurement, thinks this infer-
ll rights reserved.
ence is presumptuous (1990, 170), and he contends that the
history of the temperature concept is partly to blame for the pre-
sumption: ‘‘[T]he fact that some physical quantities were initially
identified only ordinally (e.g., temperature) has encouraged
psychologists to treat order as a sign of quantity’’ (ibid.). Order
doesn’t entail quantity, of course, but why shouldn’t psychologists
find encouragement in the success of thermometry? Michell’s re-
sponse would seem to be that thermometry’s success counts for
little now that there exists a body of theory, which enables psy-
chologists to test hypotheses that mental attributes have quantita-
tive structure (1999, 219). For, according to Michell,

[I]n the absence of experimental tests known to be specifically
sensitive to the hypothesised additive structure of the attribute
studied, it is not known whether or not these attributes are
quantitative and thus it is not known whether or not existing
procedures measure them. (1999, 216)

It is with advances in measurement theory, in particular, conjoint
measurement, that tests sensitive to additive structure in intensive
magnitudes have become possible. I argue that such tests are less
valuable than simply looking for benefits analogous to those that
Black derived from treating temperature as a quantity.

http://dx.doi.org/10.1016/j.shpsa.2011.07.001
mailto:David.Sherry@nau.edu
http://dx.doi.org/10.1016/j.shpsa.2011.07.001
http://www.sciencedirect.com/science/journal/00393681
http://www.elsevier.com/locate/shpsa


Fig. 1. Galileo’s thermoscope.

Fig. 2. Telioux’s thermoscope-cum-scale.
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2. Thermoscopes and thermometers

Galen recognized four degrees of heat and four degrees of cold,
and classified drugs according to their power to heat or cool a
patient to a specified degree (Taylor, 1942, 129–130). However,
Galen’s use of degrees depended only upon his judgment as a phy-
sician, not the use of a measurement procedure. He did not count
degrees, but only compared his patients to standard cases. His pro-
cedure is similar to judging that a patient has first, second or third
degree burns: A suitable series of adjectives (moderate, serious, se-
vere, extreme, etc.) would serve as well. Thus, Galen’s use of ‘‘de-
gree’’ did not require him to assign a numeral. For present
purposes, ‘‘temperature’’ will denote a degree (or level) of heat
independent of its being assigned a numeral. Our goal is to unearth
the circumstances in which assigning a numeral to a temperature
constitutes a quantitative measurement.

Thermoscopes were the earliest devices for detecting tempera-
ture. Historians generally credit Galileo with constructing the first
one, ca. 1592. His thermoscope worked on the principle—known in
antiquity—that air expands when heated. When Galileo heated the
air in his thermoscope (Fig. 1), air was driven out of the tube and
bubbled up through the water. When the air cooled, water would
rise in the tube. Galileo’s device is affected by air pressure, so,
strictly speaking, it is a barothermoscope. When air pressure is
not a factor, a thermoscope enables one to observe sameness and
difference in temperature.

For some authors, a thermometer is just a thermoscope with a
scale (e.g., Middleton, 1966, 4). But what is a scale? And will any
sort of scale suffice for quantitative measurement? Middleton rec-
ognizes a drawing and description of a thermoscope-cum-scale
from 1611 (Fig. 2). The drawing and description are by Telioux.
While Middleton treats this instrument as an air thermometer,
it’s less sophisticated an instrument than that constructed by von
Guericke, ca. 1660 (Fig. 3). Von Guericke’s device is unaffected by
air pressure because it is closed to the atmosphere, and the ‘work-
ing liquid’ is brandy, which doesn’t freeze at colder temperatures.
1 Campbell is referring not only to Fahrenheit’s 18th century instruments, but to the int
Measures in 1913. See ‘‘Report of the National Physical Laboratory for
DisplayArticleForFree.cfm?doi=AN9295400292&JournalCode=AN.

2 Perhaps Wolf sees Renaldini’s spirit thermometer, which introduced the ice and steam
that De Luc demonstrated the validity of the conventional division into equal parts only i
Like Telioux’s instrument, von Guericke’s gives readings in one of
eight regions. But unlike Telioux’s instrument, von Guericke’s
makes no pretense of measurement. Yet it gives more and better
information than Telioux’s, not only because air pressure is not a
factor, but because ‘‘frigid air,’’ ‘‘temperate air,’’ etc., which corre-
spond to familiar sensations, are less arbitrary than Telioux’s
numerals.

In view of the last two examples, it is unsurprising that there is
little consensus about the appearance of the first thermometer.
Campbell, who interprets ‘‘measurement’’ quite strictly, writes:

Thus, the scale of temperature of the mercury in glass Centi-
grade thermometer is quite as arbitrary as that of the instru-
ment with the random marks. (1920, 359)
The international scale of temperature is as arbitrary as Mohs’
scale of hardness. (400)1

Other authors are less extremes. Wolf, for example, refers indiffer-
ently to Galileo’s device and its immediate descendants with both
‘‘air-thermometer’’ and ‘‘air-thermoscope’’ (1950, 83ff.); though
once the discussion turns to liquid devices, he drops the term ‘‘ther-
moscope’’ (86ff.). Wolf later distinguishes thermometers from ther-
moscopes by the presence of a scale, though he blurs his distinction
by observing that at first these degrees were ‘‘purely arbitrary in
value.’’ This problem, he claims, was solved at the end of the 17th
century by the adoption of two fixed points ‘‘and the division of
the interval between these points into a conventional number of
equal parts’’ (1952, 306–307).2 Unfortunately, he never clarifies
why that should be the decisive event.

Roller links the first thermometer to a scale that could be repro-
duced with precision (1966, 121–123). Thus, he treats the instru-
ments of Accademia del Cimento (ca. 1660) as thermoscopes
because their fixed points, most severe winter cold and greatest
ernational temperature scale adopted by the Fifth General Conference of Weights and
the Year 1928,’ ’ 29–33, http://www.rsc.org/delivery/_ArticleLinking/

points as fixed points ca. 1694, as the first real thermometer. But he argues elsewhere
n the second half of the 18th century and only for the mercury thermometer (294).

http://www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=AN9295400292&amp;JournalCode=AN
http://www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=AN9295400292&amp;JournalCode=AN


Fig. 3. von Guericke’s thermoscope/thermometer.

D. Sherry / Studies in History and Philosophy of Science 42 (2011) 509–524 511
summer heat, could not be determined with precision. He places
the emergence of the thermometer at the point of recognizing that
air pressure must be taken into consideration before the ice and
steam points can be suitably fixed to constitute a universally com-
parable scale. Roller, too, offers no justification for his decision to
found quantitative measurement upon universal comparability.

Klein contends that the first thermometer is probably due to
Rømer (ca. 1702), who introduced a method for determining rigor-
ously the uniformity of the tube through which liquid rose and fell
(1974, 296ff; cf. Middleton, 1966, 67). This division point is also
prima facie plausible. But like Wolf’s and Roller’s it employs a con-
cept of quantitative measurement without making it explicit.

A recent and generally fascinating history of thermometry,
Chang (2004), also fails to explicate quantitative measurement.
For instance, in the course of arguing that there is more to a scale
than simply making a series of marks on a tube, Chang writes

To help our observations, some lines can be etched onto the
tube, and some arbitrary numbers may be attached to the lines.
Many of the early instruments were in fact of this primitive
type. These instruments should be carefully distinguished from
thermometers as we know them, since they are not graduated
by any principles that would give systematic meaning to their
readings even when they are ostensibly quantitative. I will fol-
low Middleton in dubbing such qualitative instruments thermo-
scopes, reserving the term thermometer for instruments with
quantitative scales that are determined on some identifiable
method. (Chang, 2004, 41)

Chang’s condition, ‘‘graduated by . . . principles that would give sys-
tematic meaning to their readings,’’ does little to reveal the princi-
ple that distinguishes thermoscopes from thermometers. For some
(Wolf, e.g.) are evidently satisfied that Fahrenheit (ca. 1720) gave
systematic meaning to readings from his device, while others
(Campbell, e.g.) would just as evidently deny that claim. Subse-
quently, Chang hints that systematic meaning requires ‘‘numbers
for which some arithmetical operations yield meaningful results’’
(ibid.). Later, however, Chang confounds the issue by distinguishing
3 Sagredo also reported proportions between differences in temperature. ‘‘[I]t appears th
difference between the excessive heat of summer and the excessive cold of winter’’ (quot
ordinal quantities from cardinal quantities (229). If there are ordinal
quantities, then one can’t ‘‘reserve the term thermometer for
instruments with quantitative scales that are determined on some
identifiable method,’’ for thermoscopes use ordinal quantitative
scales.

Chang’s gesture toward meaningful arithmetical operations of-
fers a promising strategy, but he doesn’t pursue it. Instead, after
drawing the line between thermoscopes and thermometers at
the introduction of water’s freezing and boiling points, he simply
declares that this innovation

. . . allowed a true quantification of temperature. By means of
numerical thermometers, meaningful calculations involving
temperature and heat could be made and thermometric observa-
tions became possible subjects for mathematical theorizing. (48)

Even if this account is correct, it lacks an argument to show that find-
ing phenomena sufficiently constant in temperature (as determined
by thermoscopes) to serve as fixed points, and then dividing the
interval between them suffices to quantify temperature. We need,
at a minimum, an account of meaningful calculations involving tem-
perature and heat. §§3–4 provide such an account, based upon the
different uses of thermoscopes and thermometers.
3. Ranking

Letters to Galileo from his friend Sagredo include many exam-
ples of the early uses of thermoscopes. In 1613 Sagredo wrote:

The instrument for measuring heat, invented by your excellent
self, has been reduced by me to various very elegant and conve-
nient forms, so that the difference in temperature between one
room and another is seen to be as much as 100 degrees. With
these I have found various marvelous things, as, for example,
that in winter that air may be colder than ice or snow; that
the water just now appears colder than the air; that small
bodies of water are colder than large ones, and similar subtle
matters. (quoted in Middleton, 1966, 6–7)

Of Sagredo’s four examples, the last three involve a comparison by
means of the relation ‘hotter than’ between one body and another.
His judgments stem from observing that the bodies correspond to
different levels in a thermoscope; none of these observations require
that a numerical scale be attached to the instrument. However, the
first example purports to observe a quantitative difference between
the levels of the thermoscope, and that requires a numerical scale.
Do the numerals on this scale serve a purpose beyond, say, that of
‘‘frigid air,’’ ‘‘temperate air,’’ etc. in von Guericke’s scale?

Sagredo’s scale includes infinitely more degrees of temperature;
so, it yields a more precise ranking of thermal phenomena. It is also
more convenient than von Guericke’s. Von Guericke requires sepa-
rate procedures to locate each of the intermediate points, while
Sagredo’s intermediate points are established by simple geometry.
There is, however, no indication that Sagredo put observations of
differences and ratios of differences to use by correlating them
with further phenomena. Had he been able to observe that, for
example, equal temperature differences correlate mathematically
with differences between magnitudes of some further property—
as Galileo was able to correlate differences between time con-
sumed and distances traversed in free fall—he would have laid
claim to practical application of his instrument. But Sagredo was
mostly content to marvel at rankings, e.g., well water’s being
colder in winter than summer, in spite of what the senses reveal
(7).3
at salt combined with snow increases the cold by as much as amounts to a third of the
ed in Middleton, 1966, 10).
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Kuhn comments that early experiments in the study of heat are
more like investigations of a new instrument rather than investiga-
tions with it (1961, 58). That seems exactly right: Sagredo’s ‘quan-
titative’ observations suggest a tremendous potential for his
instrument, but he was unable to actualize that potential. Kuhn,
in fact, was one of the first to appreciate that a body of theory is
ordinarily pre-requisite for fruitful measurement (ibid., 47). In
the absence of some effort to coordinate phenomena by means of
mathematical laws, Sagredo’s measurements could do little more
than nourish curiosity about the realm of thermal phenomena.

Sanctorius did do more than investigate a new instrument. He
took the temperature of patients by observing the distance through
which the liquid fell during ten beats of a small pendulum (Taylor,
1942, 138–139). When the liquid fell more quickly, it was an indi-
cation of fever.4 Sanctorius’s observations, then, had a use beyond
merely ranking thermal phenomena. They were used to draw further
inferences: The symptoms associated with fevered or non-fevered
states could be inferred from the rate at which the column of liquid
fell. And perhaps increasingly severe symptoms could be inferred
from increasingly rapid rates of fall. Even so, Sanctorius didn’t re-
quire that the thermal levels be quantitative. His purpose can be
accomplished by observing merely qualitative relations: He ranked
thermal phenomena by ranking distances. Sanctorius’s inferences
are not drawn in accordance with arithmetic; for they depend only
upon the order of the numerals.

None of this suggests that thermoscopes had no role in physical
theory. Boyle’s law (1662) states that for a sample of a gas at a con-
stant temperature, as the volume increases the pressure decreases
proportionally, and vice versa. In order to demonstrate this law
experimentally, Boyle had to subject readings of volume and pres-
sure to arithmetic treatment; he showed that for a given tempera-
ture the products of correlated measures of volume and pressure
gave were equal to one another. This result depends upon the level
indicated by a thermoscope. Boyle had observed that temperature
increased with pressure, and so he had to apply a cold cloth to the
bulb containing the gas in order to bring the temperature down
(Schooley, 1986, 12). But even if the levels on Boyle’s thermoscope
were marked by numerals, he did not employ these numerals in
calculation. That is, his demonstration of the law did not require
that temperature be a genuine quantity. Likewise, Boyle’s determi-
nation of the expansion coefficients for different liquids did not
presuppose that temperature is a quantitative attribute. For he
would measure the degree of contraction or expansion between
fixed points, e.g., room temperature and freezing (Barnett, 1956,
290). And although he and his successors often employed Boyle’s
law, that employment (as far as I have been able to determine)
never presupposed that temperature possessed more than an ordi-
nal structure. That is, none of these advances achieved a theoretical
understanding of thermal phenomena by subjecting temperature
readings to arithmetic operations.

There were, however, a series of technical achievements that
had to occur before the quantification of temperature was even
possible. They solved a problem articulated by Huygens in a letter
of 1665:

It would be a good thing to devise a universal and determinate
measure of cold and heat . . . so that without sending thermom-
eters5 one should be able to communicate the degrees of heat and
4 The liquid falls in the presence of fever because Sanctorius used an air thermoscope.
5 See note 7 below.
6 ‘‘Natural philosopher’’ is perhaps more suitable, as ‘‘scientist’’ did not appear in Englis
7 The term thermoscope (thermoscopium) appeared first in 1617 (Middleton, 1966, 11). O

(Wolf, 1950, 84). In the seventeenth century the term ‘‘thermometer’’ was applied to inst
Huygens above and Taylor (1942, 132). The distinction between thermoscopes and therm
context of Fahrenheit’s ‘thermometer’, which could claim the mantle of thermometer only
concepts.
cold which have been found in experiments, and to record these
for posterity. (quoted in Middleton, 1966, 50–51)

Reliable instruments must give the same readings in the same cir-
cumstances. Their method of production should be such that they
achieve the effect of a single instrument without the inconvenience
of sharing. Reliable instruments are, in other words, comparable,
and comparability is the criterion to which Wolf, Roller, and Chang
appeal in dating the appearance of thermometers.

The problem of comparability was solved gradually, as instru-
ment makers became aware of the conditions under which read-
ings could vary. It’s understandable, then, that historians could
disagree about the date of the thermometer’s appearance. In the
1640s scientists6 began to understand that thermoscopes were af-
fected by atmospheric pressure. To solve this problem instrument
makers used liquid instead of air as the thermometric substance,
i.e., the substance whose states are the observed effects of tempera-
ture, and sealed off the thermometric substance from the
atmosphere (Middleton, 1966, 27–28). The next steps toward com-
parability were settling upon one thermometric substance and one
method for numbering points along the scale. By 1740—shortly after
Fahrenheit’s death and as Celsius was beginning to make instru-
ments—mercury had become the preferred substance: It is easy to
expel impurities from mercury; it remains liquid over a wide range
(�38 �F to 600 �F); unlike water and alcohol, it does not cling to the
sides of the tube; and, unlike water, it does not expand as it ap-
proaches the lower limit of fluidity. At the end of the 17th century,
the preferred method of numbering the scale was to choose a pair
of fixed points and to define a degree as a fixed proportion of that
interval. By 1740 instrument makers had settled upon the freezing
and boiling points of water, and as a result of these and other inno-
vations ‘thermometers’7 had become fairly well standardized. For
example, a pair of Fahrenheit’s devices read within a sixteenth of a
degree of one another (Middleton, 1966, 74). Still, no more could
be claimed for them than that they provided standards for a uniform
and precise ranking of thermal phenomena. There were still no
meaningful calculations based on readings from Fahrenheit’s
instruments.

4. Quantifying

Joseph Black is the first scientist who can lay claim to having
employed Fahrenheit’s device to quantify intensity of heat. He
accomplished this feat in the 1760s, decades after Fahrenheit’s
death. Unlike his predecessors, Black used readings from his device
to achieve a theoretical understanding of thermal phenomena by
applying mathematics to the readings. Surprisingly, Black’s mathe-
matical techniques emerged long before the thermoscope. He
melded this older, conceptual tradition with the experimental
tradition that immediately preceded his discoveries.

4.1. Conceptual foundations

The conceptual tradition arose in the late Middle Ages, reaching
its pinnacle in the work of Nicole Oresme, ca. 1350. While Oresme
and his colleagues investigated topics that can be traced to
Aristotle, their results were a marked departure from his thought.
Aristotle distinguished ultimate categories of being, among them
h until the 1760’s.
nly seven years later the term thermometer (thermomètre) was used first by Leurechon
ruments whose readings were put to no strictly quantitative use. See the quote from
ometers is, therefore, an expository device. That device becomes problematic in the
decades after Fahrenheit’s death, once Black used it to construct new thermodynamic
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Fig. 4. Oresme’s diagrams.
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quality and quantity (Cat. 1b25ff.). Some of the former (e.g., white,
grammatical) admit of contraries as well as more and less (10b12,
10b26), while none of the latter (e.g., four-foot, five-foot) admit
contrariety or more and less (5b11, 6a19).8 Although Aristotle recog-
nized different degrees of quality (Phys. 226b1-5), he denied the pos-
sibility of comparing them quantitatively.

That which is not a quantity can by no means, it would seem, be
termed equal or unequal to anything else. One particular dispo-
sition or one particular quality, such as whiteness, is by no
means compared with another in terms of equality and inequal-
ity but rather in terms of similarity. (6a31-4, my italics)

Even if Aristotle were willing to compare differences between de-
grees, there would have been no question of comparing those differ-
ences in terms of equality and inequality.

Aristotle did not always adhere to the strict separation of qual-
ity from quantity. For instance, he treated ‘‘thin’’ and ‘‘fast’’ as
standing in quantitative relations like double and half (Phys.
215b1-11). Furthermore, he considered a quantitative treatment
of degrees of hot and cold when he suggested that a mixture of
hot and cold elements might have a ‘‘power-of-heating that is dou-
ble or triple its power-of cooling’’ (De Gen. & Corr. 334b8-16). Aris-
totle, it seems, succumbed to the temptation to take order as a sign
of quantity. Medieval physicists were similarly tempted, and much
to the benefit of posterity. For in developing accounts of qualitative
change they set aside Aristotle’s rigorous distinction between qual-
ity and quantity and treated qualities as continuous quantities.9

The resulting conceptual apparatus made Black’s achievements
possible.

Yet the medievals did not ignore entirely Aristotle’s distinction,
for they referred to the degrees of quality as intensive (or virtual)
quantities, distinguishing them from extensive (dimensive or corpo-
real) quantities, which are quantities in the sense of Aristotle’s
Categories (Clagett, 1959, 212). According to Aristotle, quantities
are always composed of parts (4b20-1); intensive quantities, in
contrast, lack parts, or at least parts that are apparent. Medieval
physicists were able to advance the quantitative treatment of
qualities by turning attention to the distribution of a quality in a
subject. Intensity of heat can be distributed uniformly or non-
uniformly in a body; for example, the intensity of heat may be less
in exposed than unexposed flesh. Likewise, intensity of motion
(velocity) can be distributed uniformly or non-uniformly over the
interval in which a motion occurs, as when a body moves at a con-
stant velocity or accelerates. When a quantitative treatment of
qualitative intensity was applied to the analysis of variation in
intensity, a new field of research arose, viz., the quantitative study
8 As a consequence, length is not a quantity, though particular lengths (four-foot, five-fo
degree’’ (Cat. 6a19), a claim that is patently false in modern measurement theory. There le
levels or degrees.

9 Murdoch attributes the change to the emergence, poorly understood, of ‘‘a veritable fu
(1997), which, unfortunately, doesn’t explain the furor either. In any case, the furor was to
Maier (1982) suggests that the urge to quantify can be traced to scripture (149–150): ‘‘Yo
of the extension of a quality in a subject. Although Oresme was not
the first to contribute to this field, his geometric treatment of the
subject clarified and extended it significantly (cf. Oresme, 1968).

Oresme proposed that the extension of a quality in a subject be
represented by a figure whose base corresponds to the extension of
the subject and whose altitudes correspond to the intensity of that
quality at each point in the subject. Thus, a rectangle represents a
quality whose intensity is uniform throughout its subject (Fig. 4a),
while a right triangle (or right trapezoid) represents a quality
whose intensity is uniformly non-uniform (or uniformly difform)
(Fig. 4b).

The areas of Oresme’s figures constitute measures of the quan-
tity of a quality, and by comparing these areas, it is possible to
demonstrate theorems about the quantity of a quality. One, the
mean degree theorem, reappeared 300 years hence in Galileo’s
demonstration that distance in free fall is proportional to the
square of the time (Galilei, 1974, 165–169). The mean degree the-
orem states (cf. Fig. 4c): The quantity of a uniformly difform qual-
ity (DABC) is equivalent to the quantity of quality uniform in the
degree mean between the initial and final degrees of the latitude
uniformly difform (ABFD, with BF = 1/2 BC). The mean degree the-
orem treats both intensities and differences between intensities as
continuous quantities. Oresme’s graphical representations are
especially perspicuous, but arithmetic and algebraic representa-
tions of the quantity of a quality were employed both before and
after Oresme. In such cases the quantity of a quality was under-
stood as the product of an intension and an extension. Newtonian
mechanics made particularly good use of this technique, e.g.
mass = density (intension) � volume (extension) (Roche, 1998,
117–118). Black’s conceptual innovations—specific and latent
heats—used the same strategy.

By representing quantities of heat as the product of intensions
(i.e., temperatures) and extensions, it is possible to solve problems
such as the following mixture problem from a treatise that has
been attributed to Roger Bacon (late 13th century).

[L]et there be given water of two weights hot in the sixth
degree, . . . [and] let there be given again another water of one
weight hot in the twelfth degree; . . . a mixture of the two
waters having been made, the hotness of the mixture will be
raised in a line intension through eight degrees, since the dis-
tance that is between six and eight is one half the distance that
is between eight and twelve, just as the water of one weight is
half the water of two weights. (Clagett, 1959, 335)

The author imagines that the final temperature (tf) achieved by both
liquids results from two pounds at six degrees gaining a quantity of
ot) are. Thus Aristotle can assert, ‘‘Quantity does not, it appears, admit of variation of
ngth is a paradigm quantity in which Aristotle’s quantities (four-foot, five-foot) – are

ror to measure all things possible’’ (1974, 62). The furor is amply illustrated in Crosby
quantify, rather than measure; medieval physicists never actually measured anything.
u have ordered all things in measure, number and weight’’ (Wisdom 11:21).
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heat that is lost by one pound at twelve degrees; in other words,
2 lbs. � (tf � 6) = 1 lb. � (12 � tf), and so tf = 8 degrees. Call this ‘‘Ba-
con’s rule.’’ The rule rests upon a principle for computing weighted
means, here, tf ¼ w1t1þw2t2

w1þw2
. There is nothing mathematically new in

the mixture problem, as ancient computations of balance points
used an analogous principle. The only innovation consists in treat-
ing a quality (temperature) as a continuous quantity. Of course
the medieval investigation of quantities of quality proceeded secun-
dum imaginationem—on the supposition that such measurements
had been made—as no thought was given to actual measurement.
But four centuries later these flights of imagination provided the
means for introducing a quantitative temperature concept.

4.2. Non-arbitrariness

In order for Fahrenheit’s device to measure quantity, its scale
must not be, in Campbell’s phrase, ‘‘as arbitrary as Mohs’ scale of
hardness’’ (1920, 400; cf. p. 5 above). The arbitrariness of Mohs’
scale lies in the freedom available to Mohs in assigning numerals
to different levels of hardness. The only restriction on his assign-
ments is that the numeral assigned to the harder mineral come after
the numeral assigned to the softer mineral, given some procedure
for determining which of the two minerals is harder than the other.
That is, any monotonic transformation of Mohs’ scale would have
served Mohs’ purpose—viz., ranking—equally well. Relative to
Mohs’ scale the difference between the hardness of diamond (10)
and the hardness of quartz (7) is 3, and likewise the difference
between the hardness of quartz and the hardness of fluorite (4) is
3. But one may not infer that quartz is harder than diamond by
an amount equal to that by which diamond is harder than quartz
unless any monotonic transformation of Mohs’ scale would dictate
the same inference. Obviously, that condition fails to hold; the
transformation f: n ? 2n, for instance, would not yield an equality.

Early developers of thermometers no doubt hoped that their
instruments would do more than rank thermal phenomena. Boyle,
for instance, wrote in 1662,

I consider that we are very much to seek for a standard, or cer-
tain measure of cold, as we have settled standards for weight
and magnitude and time; so that when a man mentions an acre,
or an ounce, or an hour, they that hear him know what he
means and can easily exhibit the same measure. (quoted in
Barnett, 1956, 304)

But even the technical innovations of Fahrenheit et al. could not
guarantee that the equally spaced subintervals on a mercury ther-
mometer are more than a precise and convenient way to compare
different levels of temperature. Their equal subintervals would have
lack significance if, for instance, mercury expanded slowly at tem-
peratures below blood heat but more rapidly at temperatures above
blood heat.10

To rule out such a scenario would be easy if there were a way of
determining how mercury expands with the rise of temperature,
i.e., if one had a function from temperature to volume,
f(tempHg) = volHg. But such a function presupposes a thermometer
whose non-arbitrariness is already established. This vicious circle,
which seems to dash the hope of a non-arbitrary temperature
scale, is not always appreciated. Black observed that his predeces-
sor Boerhaave overlooked the question (Black, 1803, 57). McGee
(1988), a standard text on temperature measurement, claims that
Fahrenheit switched from alcohol to mercury ‘‘because it had a
more nearly linear thermal expansion with temperature’’ (7). Yet
there is no indication of how Fahrenheit could have known this.
10 Using mercury as a standard, De Luc (1772) found this is exactly what happens with
11 Uniformity is important in studies on the effectiveness of treatments, and a great deal

non-numerical.
Chang refers to the vicious circle as ‘‘the problem of nomic mea-
surement’’ (2004, 59–60). He first noticed the problem in connec-
tion with energy measurements in quantum mechanics, where he
settles for a tolerable circularity, allowing different methods of
measurement to justify one another (1995, 153–154). He believes,
however, that the problem of nomic measurement is solvable for
temperature.

. . . Regnault solved the greatest problem standing in the way of
making numerical temperature observable: the problem of
nomic measurement. The solution, as I have already noted,
was the criterion of comparability . . . (2004, 89).

But Regnault’s account of comparability is not up to solving the
problem of nomic measurement:

Regnault’s secret was the idea of ‘‘comparability.’’ If a thermom-
eter is to give us the true temperatures, it must at least always
give us the same reading under the same circum-
stance. . . . Regnault considered this ‘‘an essential condition that
all measuring apparatuses must satisfy.’’ (77)

While comparability is necessary for an instrument to rank temper-
atures for scientific ends, the fact that an instrument gives the same
readings under same circumstances is no indication that a given
attribute is quantitative. As observed a few paragraphs back, com-
parability can’t insure equality of differences given the possibility
that the thermometric substance expands differently in different
temperature ranges. Consider the following analogous case. It is
not out of the question that with practice a panel of judges could
achieve uniformity in assigning scores.11 But it would not follow
that the judges’ agreement shows that they are measuring a contin-
uous quantity; for nothing in this scenario commits them to claiming
that the difference between samples marked 5 and 3 is equal to the
difference between essays marked 10 and 8. Thus nomic measure-
ment is still, apparently, a difficulty for temperature.

Michell, too, is casual about the problem of nomic measure-
ment. In describing how scientists carry out the instrumental task
of quantifying temperature he writes,

Within a specific range of temperatures, it has been found that
the temperature of a liquid (say, the metal, mercury) is linearly
related to its volume, if pressure is held constant. Thus in a
sealed glass tube of uniform width, for a limited range, temper-
ature varies linearly with the height of the column of liquid. By
this mean it is possible to measure temperature via measure-
ments of length. (1999, 76)

But nowhere does Michell present the warrant for the claim that,
within some range, mercury’s temperature is linearly related to
its volume, although the claim presupposes that one has already a
method of measuring temperature. Since this case has, apparently,
misled psychologists, it is incumbent upon Michell to elaborate. In
my view, the elaboration would feature the Scottish chemist Black,
the first to overcome temperature’s problem with nomic
measurement.

Black sought to understand quantitatively how heat flowed in
processes like melting, boiling, and mixing substances at different
temperatures. He would not have undertaken a quantitative inves-
tigation of heat flow unless he believed, with his predecessors, that
temperature is a continuous quantity, similar to length, time, and
weight. Length, time, and weight have parts, as Aristotle observed,
and because those parts may be joined or separated, it is apparent
that measures of length, time, and weight may be added to and
alcohol and other thermometric substances (Middleton, 1966, 124).
of time and money are spent on insuring uniform judgments, even when the data is
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subtracted from one another to calculate the result of joining and
separating. But temperature lacks parts; thus it is not apparent that
thermometer readings may be added or subtracted. Black’s results
vindicated his belief that thermometer readings may be added and
subtracted.

In order to study heat flow, Black needed an instrument whose
readings could be subject to calculation; so he acquired one of
Fahrenheit’s thermometers and tested whether its readings satis-
fied Bacon’s rule (Black, 1803, I, 56–59).12 If the device really mea-
sured temperature, then its readings of final temperatures of
mixtures should agree with temperatures calculated using that rule.
For instance, if Fahrenheit’s instrument reads 100� inserted in a sam-
ple of water weighing 1 pound and 50� in another sample of water
weighing two pounds, then if the device is measuring a continuous
quantity, the final temperature should read 1ð100Þþ2ð50Þ

1þ2 ¼ 66:6. By
varying weights and temperatures, it should be possible to check
Fahrenheit’s device at most points on the scale. Black writes:

The experiment being made with these precautions, the result
has shown, that when the thermometer is made of quicksilver,
the gradual expansions of this fluid, while it is heated slowly,
from the cold of melting snow to the heat of boiling water are
very nearly proportional to the additions of heat by which they
are produced. There is, however, a little deviation from the
exact proportion; while the heat increases, the expansions
become a little greater than in proportion to the increase or
addition of heat. . . . In [quicksilver] this irregularity is so incon-
siderable within the range of heat above mentioned, that it does
not deserve any notice in common experiments, and in the
ordinary use of thermometers. (59)

Evidently, he was satisfied.
Black’s test is standard hypothetico-deductive procedure, viz.,

deducing future readings from prior readings and the hypothesis
that the instrument’s readings obey the laws of continuous quan-
tity. Black’s result is grounds to hope that Fahrenheit’s device sheds
light on heat flow. But, as one expects from a hypothetico-deduc-
tive test, it cannot verify that ‘‘the degrees of their scales express,
or point out, equal differences of heat’’ (56). There are at least three
difficulties that arise. (1) Black doesn’t give specific predictions, but
when DeLuc performed the experiment in 1772, he found that mix-
ing equal weights of water at 0� and 80� (on Réaumur’s scale)
yielded 38.6� rather than the predicted 40�. Whether to count this
as a confirmatory or falsifying instance depends on the value of the
uses to which the readings are put. At the time Black performed the
experiments, however, temperature had not yet come to occupy a
significant quantitative role, either practical or theoretical. In the
absence of a useful practical or theoretical role for readings from
the thermometer, the results of Black’s mixture experiments do
no more than reveal a curious quantitative phenomenon. I.e., the
readings have yet no place in quantifying thermal phenomena.

(2) One of the precautions that Black mentions was compensat-
ing for the temperature of the vessel in which the mixing took
place by performing the experiment in identical vessels, one hot
and one cold, and then ‘‘taking the medium of the results’’ (58).
Black’s proposal is clever, but it’s not a complete solution of the dif-
ficulty. One needs to understand the thermal behavior of materials
other than mercury in order to assess the significance of the exper-
imental results, and that, of course, is the theory Black is trying to
construct. It is particularly important to understand how glass
12 Black died in 1799; the text was prepared from Black’s notes by his student and then co
1759 and 1763 (McKie & Heathcote, 1935, 31).

13 DeLuc, like Black before him, had found that mercury seems to expand more quickly a
foundation of modern thermometry, the mercury thermometer actually expand more qui

14 In modern physics capacity for heat is the product of mass and specific heat. The latter c
measure (J/kg�K), whereas Black’s concept is relative measure—the ratio between the heat
expands upon heating before one can be confident about Fahren-
heit’s device.13 (3) And finally, there are unstated theoretical
assumptions at the basis of Black’s experiment, the conservation of
heat, for example. A genuine thermometer would be useful in con-
firming them, too. Black too faced the problem of nomic measure-
ment: To verify rigorously that Fahrenheit’s degrees represent
equal differences, he apparently required a thermometer with estab-
lished credentials.

Black treated Fahrenheit’s instrument as a bona fide measure-
ment device, even though one could object reasonably to his doing
so. Our three objections would have been decisive if Black hadn’t
been able to use the instrument in company with the medieval
quantification of quantity, to turn familiar qualitative observations
into a pair of quantitative concepts fundamental to the science of
heat—capacity for heat14 (nowadays, specific heat) and latent heat.

4.3. Capacity for heat and latent heat

Black’s predecessors observed that when iron and wood are
heated to the same temperature (indicated by a thermoscope),
the iron feels warmer and feels warm longer than the wood. Like-
wise, they observed that when iron and wood are cooled to the
same temperature, the iron feels colder and feels cold longer than
the wood. Black explained these phenomena by supposing that
iron had a greater capacity for heat than wood; thus iron released
more heat when it was warmer and absorbed more heat when it
was cooler (1803, 78). The same supposition explained the surpris-
ing observation that water took more time to become hotter and
also more time to become cooler than mercury, in spite of the lat-
ter’s greater density (82). Thus far, Black’s explanation is merely
qualitative; the heat capacities of substances can be ranked in
indefinitely many levels by comparing periods of time. Black then
proceeded to quantify heat capacity by means of Fahrenheit’s
device:

[I] estimated the capacities, by mixing the two bodies in equal
masses, but of different temperatures; and then stated their
capacities as inversely proportional to the changes of tempera-
ture of each by the mixture. Thus, a pound of gold, of the tem-
perature 150�, being suddenly mixed with a pound of water, of
the temperature of 50�, raises it to 55� nearly: Therefore the
capacity of gold is to that of an equal weight of water as 5 to
95 or as 1 to 19; for the gold loses 95� and the water gains 5�.
(506)

Black’s reasoning here is perfectly analogous to the medieval mix-
ture experiment. In that case, temperature change was inversely
proportional to weight, lighter

heavier : Dtheavier
Dtlighter

; here, analogously,
heat capacity1
heat capacity2

: Dt2
Dt1

. Having quantified heat capacity, Black was able to

expand the scope of mixture problems to mixtures of different sub-
stances. Two substances of masses m1 and m2, capacities for heat c1

and c2, and initial temperatures t1 and t2 (with t1 > t2, say) will,
upon mixing, attain the final temperature tf satisfying the equation
m1c1(t1 � tf) = m2c2(tf � t2). Heat capacities as determined by Fahr-
enheit’s device not only brought mixture problems from the con-
ceptual realm to the empirical realm, but they managed to unify a
range of phenomena much wider than that envisioned by the medi-
eval thinkers who first imagined that heat phenomena could be
treated quantitatively. Results were not perfect, of course, as they
lleague Robison. According to Robison, Black’s experiments were carried out between

s the temperature rises. Yet when compared with Kelvin’s thermodynamic scale, the
ckly at lower temperatures (Middleton, 1966, 125).
orresponds to Black’s capacity for heat, except that the modern concept is an absolute

s required to raise a given mass of a substance and an equivalent mass of water 1 �F.



Fig. 5. Ice calorimeter (ca. 1782).
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depended on careful determinations of heat capacity as well as the
care in taking account of heat flow to the atmosphere and the mix-
ing vessels. But Black’s construction of a quantitative concept of
heat capacity launched the science of calorimetry.

m1c1(t1 � tf) = m2c2(tf � t2) is the founding principle of calorim-
etry. It presupposes that temperature is a quantitative attribute;
that is, the principle lacks sense unless temperature is a quantita-
tive attribute. Black himself presumed, on the basis of his mixture
experiments, that Fahrenheit’s thermometer gave a good estimate
of that quantity and, consequently, the quantity he called heat
capacity. Within the range of temperatures to which he applied
the Fahrenheit thermometer Black’s presumption was supported
by observations. There was no guarantee that the readings would
be similarly useful outside this limited range, and indeed later
comparisons of air and mercury thermometers by Dulong and Petit
(1817) cast doubt on the mercury thermometer for temperatures
above 300 �C (Barnett, 1956, 323–324). But doubts about the mer-
cury thermometer didn’t undermine the quantitative status of
temperature, once Black had demonstrated that, within a limited
range, heat capacity is a valuable concept for explaining and pre-
dicting thermal phenomena. The very possibility of using heat
capacity as a theoretical concept requires that temperature be a
quantitative attribute. This situation illustrates what Toulmin calls
the stratification of physical theory: Statements at one level have a
meaning only within the scope of those at the level below
(Toulmin, 1960, 80–81). In this instance, statements (and ques-
tions) about heat capacity are unintelligible outside the scope of
statements about ratios of quantitative differences between
temperatures. Had Black’s ideas not panned out, the point about
stratification would carry no weight. But we cannot simulta-
neously grant that Black advanced our understanding of thermal
phenomena and entertain doubts that temperature is a continuous
quantity. The same argument can be made about latent heat,
Black’s subsequent advance in the study of heat.

The success of Black’s quantification of heat capacity demon-
strated that temperature change could be used as a measure of
heat change (DQ), in accordance with the simple formula
DQ = mcDt. Black was able to apply his technique for measuring
heat flow in quantifying a further concept viz., latent heat. Like
heat capacity, latent heat also arose from reflection upon familiar
phenomena. Black’s predecessors assumed that once a solid had
reached its melting point, only a small addition of heat was neces-
sary to change the entire mass to a liquid; likewise they assumed
that upon reaching its freezing point only a small subtraction of
heat from a liquid was necessary to change the entire mass to a so-
lid. Black realized that these assumptions conflicted with familiar
observations: For example, snow masses don’t suddenly become
raging torrents but melt over an entire summer. Thus he recog-
nized that there are increases in the quantity of heat that are con-
cealed or latent, in the sense of not being registered by a
thermometer. Since a mass of ice remains at the melting point
for a considerable time before it has all turned to water, the heat
it absorbs while at the melting point is latent.

Black quantified latent heat by comparing the time it took to
raise a mass of ice from the melting point to 40 �F with the time
it took to raise water from 33 �F to 40 �F (1803, 120–122). The for-
mer took 21 times as long as the latter; so he calculated the latent
heat of ice to be 21 � (40 � 33) = 147, from which he subtracted 8
degrees to compensate for the time it took to raise the completely
melted ice to its final temperature. His value of 139 �F is only 5�
less than the currently recognized value (cf. Holton & Roller,
1958, 332).15 Black did similar experiments on the latent heat of
steam, estimating it to be 810 �F, somewhat less than 972 �F cur-
15 Like Black’s capacity for heat, this too is a relative measure. Black calculated that the qu
take to raise the same mass of water 139 �F. Today, the latent heat of water is given as 14
rently recognized (ibid., 334). Black’s concept of latent heat permits
calculation of heat lost when, for example, a pound of water at, say,
190 �F cools to 0 �F. In cooling to 32 �F a pound of water gives up
1 lb. � 1 �F/lb. � (190 �F � 32 �F) = 158 �F; in freezing it gives up
144 �F, presuming the recognized value; in cooling further to 0 �F,
ice gives up 1 lb. � .5 � (32 � 0) = 16 �F, presuming .5 for the heat
capacity of ice. The net loss, then, is 318 �F (318 btu = 80.3 kcal).
Thus Black provided a simple formula for calculating heat lost and
gained during phase transition.

This proved to be the seed of thermochemistry. It made possible
Lavoisier and Laplace’s ice calorimeter (Fig. 5), though the French-
men were not explicit about their use of Black’s discovery (Wolf,
1952, I, 184–185). The ice calorimeter measures heat lost in an
experiment by weighing the water. Only with Black’s concept of la-
tent heat is it possible to transform the water’s weight to a mea-
sure of heat. Besides providing new methods for determining
specific and latent heats, the ice calorimeter made possible mea-
surement of the heat evolved in chemical reactions, including com-
bustion and respiration (ibid., 183–188). Latent heat was also
important for Watt’s study and eventual improvement of the
steam engine (McKie & Heathcote, 1935, 34 and 49–50; Wolf,
1952, I, 182).

The quantitative concepts of heat capacity and latent heat did
not require Black to determine first that temperature is a continu-
ous quantity. The point of departure for Black’s innovations lay in
simply treating temperature as a continuous quantity. His prede-
cessors also treated temperature as a continuous, intensive quan-
tity, and in light of Fahrenheit’s improvements, researchers were
justifiably hopeful that their instruments were capable of measur-
ing temperature. But only Black was able to construct upon his
assumption new thermal concepts, useful for explaining and
antity of heat it takes to melt a given mass of ice is the same quantity of heat it would
4 btu/lb, or 80 kcal/kg.
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predicting thermal phenomena. Thereby he established that read-
ings from Fahrenheit’s instrument was an instrument whose read-
ings could be subject to arithmetic manipulation and so
established the objective validity of a quantitative temperature
concept. This is not to claim that in one fell swoop Black solved
the practical and theoretical difficulties presented by the tempera-
ture concept. Due to the stratification of physical theory, though,
the subsequent development of thermodynamics could not mean-
ingfully question whether temperature is a quantitative attribute.

A crucial development was that of Charles (1787) and Gay-Lus-
sac (1802), who found independently that between 0 �C and 100 �C
the expansion of gases was proportional to the indications of the
mercury thermometer (Holton & Roller, 1958, 369–371). The coef-
ficient of expansion was nearly the same for all gases, and so they
proposed that for gases at a constant pressure, volume / tempera-
ture. Their law had two important consequences. (1) It suggested
immediately that temperature could be measured absolutely (i.e.,
with a non-arbitrary zero). If an increase in volume of 1

273 accompa-
nies an increase in temperature of 1 �C, then �273 �C constitutes
an absolute zero. (2) By combining Boyle’s law with the law of
Charles and Gay-Lussac, the Ideal Gas law, PV = kT, was derived.
That law provided the basis for the thermodynamic temperature
scale, today’s standard. To be sure, Gay-Lussac expressed reserva-
tions about thermometry:

The thermometer, as it is at present construed, cannot be
applied to point out the exact proportion of heat. . . . It is indeed
generally thought that equal divisions of its scale represent
equal tensions of caloric; but this opinion is not founded on
any well decided fact. (quoted in Chang, 2004, 57).

But these are reservations about the theoretical explanation of tem-
perature, not reservations about its quantitative status. Indeed,
caloric was introduced by Lavoisier in the 1780’s as a way to ac-
count for Black’s discoveries (Holton & Roller, 1958, 334–335),
and its plausibility—in spite of the prima facie implausibility of an
imponderable fluid—lay in the naturalness with which it accounts
for the quantitative character of thermal phenomena. As an expla-
nation for thermal phenomena, including the thermometer, calo-
ric—or more generally the idea that heat is a substance—
ultimately failed. But the failure of caloric did not count against
Black’s assumption that temperature is a continuous quantity. In-
deed, experiments that refuted the caloric theory took for granted
Black’s conceptual apparatus. For instance, in order to demonstrate
that the heat generated by boring a cannon was not the result of
caloric being released, Rumford showed that the specific heat of
the chips was the same as the specific heat of the bulk metal (ibid.,
338).

The explanatory and predictive power of concepts that presup-
pose temperature’s quantitative status reveal the hyperbole in
Campbell’s claim (1920, 400) that the mercury-in-glass thermom-
eter is as arbitrary as Mohs’ scale of hardness.16 Mohs’ scale, unlike
Fahrenheit’s, plays no role in predicting and explaining mineral phe-
nomena by means of a simple mathematical law. Thus, the best
explanation for the appearance of the science of heat in the 18th cen-
tury is that temperature is an intensive, continuous quantity whose
levels were, within a modest range, reliably indicated by mercury-
in-glass thermometers.

This conclusion suggests a reply to the problem of nomic mea-
surement, as well as a general strategy for showing that a scale is
not arbitrary, in the sense of not being merely ordinal. According to
Chang the objective validity of the (two fixed-point) mercury
thermometer depends on the assumption that mercury expands
16 Barnett refers, similarly, to the ‘‘arbitrariness inherent in an elementary temperature s
thermometric substance and method of graduation of a temperature scale, but there are ot
assigns are arbitrary in the sense that they may be subject to a transformation without af
uniformly with temperature. But, he claims, we can test this
assumption only by plotting volume and temperature, which pre-
supposes a reliable thermometer—the very thing in question (59).
Justification by means of a direct test is plainly out of the question
for the mercury thermometer. But there are less direct ways to jus-
tify an assumption. Assuming that mercury expands uniformly
with temperature is to assume that temperature, like volume, is
a continuous quantity. Generally speaking, if there are higher-level
concepts whose power of prediction and explanation presupposes
the quantitative character of a lower-level concept then there are
good grounds for accepting that the attribute denoted by the lower
level concept is quantitative. The power of both specific heat and
latent heat, then, are the grounds for maintaining that temperature
is a quantitative attribute.

Calorimetry and the discovery of the thermodynamic temperature
scale presuppose that temperature is a quantity. In light of the thermo-
dynamic scale it can be shown that, in fact, mercury expands more rap-
idly as temperature increases. But that discovery does not undercut the
work of Black, Lavoisier, Laplace, Charles, and Gay-Lussac. In light of the
thermodynamic scale, the expansion of mercury is approximately uni-
form between 0 �C and 100 �C, certainly more uniform than, say, alco-
hol or water. If mercury had been scarce or unknown in the 18th
century, and Black had had to rely upon alcohol or water as his thermo-
metric substance, it is less likely that the theory of heat would have
would have gotten underway. That is, the linear expansion of those
substances would have remained unjustified assumptions because
neither would have led to higher-level concepts for explaining and pre-
dicting thermal phenomena.

In sum, both the claim that temperature is a continuous quan-
tity and the claim that it is measured by Fahrenheit’s mercury-
in-glass thermometer rest on abductive grounds. Their truth, or
better, their approximate truth, is the best account of Black’s suc-
cess. Black’s accomplishments provide a simple and straightfor-
ward model for establishing that an attribute is quantitative, a
model that compares favorably, I argue, with the models by which
measurement theorists propose to determine whether an attribute
is quantitative.
5. Representational measurement theory

Michell explains the significance of measurement theoretic
models by means of a distinction between the scientific and instru-
mental tasks of quantification. The scientific task consists in deter-
mining empirically whether an attribute is quantitative; the
instrumental task consists in contriving procedures whereby ratios
between levels of an attribute can be reliably estimated, usually by
exploiting a relationship between the attribute being quantified
and one already quantified (1999, 75). The scientific task

. . . has logical priority in sciences aspiring to be quantitative. In
relation to psychology, as far as the logic of quantification is
concerned, attempting to complete the scientific task is the only
scientifically defensible way in which the nexus between the
measurability thesis and the quantity objection can be resolved.
(76, my italics)

The measurability thesis asserts that some psychological attributes
are measurable, while the quantity objection denies that there are
any quantitative psychological attributes (25). At least one of these
claims is false if, as we may assume, measurable attributes are
quantitative. Were they to employ the resources of measurement
theory, Michell argues, psychologists could, achieve ‘‘a genuine
cale’’ (1956, 289). Barnett is referring apparently to the dependence upon a particular
her senses in which a scale can be arbitrary. E.g., the particular numbers that the scale
fecting the purpose for which the scale is constructed.
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resolution of the aporia facing those attempting psychological mea-
surement’’ (75).

Psychologists have largely ignored measurement theory, and in
particular conjoint measurement, which applies to quantities like
temperature that don’t admit extensive measurement. Conjoint
measurement applies to mental attributes if they are quantitative;
hence, a demonstration that intelligence, say, satisfies (or fails to
satisfy) the axioms of conjoint measurement would complete the
scientific task of quantification for intelligence. Prima facie, the
measurement theoretical method for establishing that a procedure
yields a cardinal measure enjoys advantages over the pragmatic
method of §4. Judging that a domain of objects satisfies an axiom
set is apparently less subjective than judging that treating an attri-
bute as quantitative yields a valuable tool for prediction and expla-
nation. Moreover, by focusing attention on the scientific task,
measurement theory enables researchers to avoid hypotheses that
suppose, mistakenly, an attribute to be quantitative. But the devil
is in the details.

Measurement theory analyzes procedures used to derive quan-
titative measures from qualitative observations. In particular, it pre-
scribes the structure that a system of qualitative observations must
have in order that numerical relations may be used to represent, on
the one hand, or describe, on the other, those observations in a way
that permits mathematical inferences about the empirical situa-
tion from which the observations are drawn. Representation differs
from description, and the difference reflects a philosophical dis-
agreement over the status of measurement statements. Empiricists
hold that measurement statements are abstract, numerical repre-
sentations of an empirical, non-numerical content. Realists, in con-
trast, hold that measurement statements describe empirical,
numerical relations among magnitudes (i.e., levels of an attribute).
According to Michell, realists embrace a traditional theory of mea-
surement according to which numbers have ‘‘a real-world exis-
tence’’ (2007, 34). Empiricists, he says, regard numbers as ‘‘man-
made constructions of abstract entities devoid of empirical con-
tent’’ (ibid., 26). I am concerned to show that neither philosophy
is satisfactory; for each requires that the empirical world exhibit
an exact structure, a requirement that flies in the face of our use
of empirical predicates. For the sake of concreteness, though, I need
to discuss specific axiom sets, and, unfortunately, the different
philosophical stances are built into the domains of those axiom
sets. In order to avoid the charge that my criticism depends on a
particular axiomatization of quantity, §5 scrutinizes systems
whose domains are sets of objects or events, while §6 looks at a
system whose domain is a set of attributes. In §6 I argue that my
criticism can’t be avoided by framing the theory in terms of attri-
butes instead of objects or events.

5.1. Weak order

A system of qualitative observations—a so-called ‘empirical
relational system’—consists of a set of objects (e.g., weights) and
a set of observable relations among those objects (e.g., ‘x is no hea-
vier than y’) (Suppes & Zinnes, 1963, 7). Let the n+1-tuple
hD;R1; . . . ;Rni, where D is the domain of objects and Ri the relations,
represent an empirical relational system. The structure of an
17 Thus, given a measuring procedure (e.g., placing weights in a pan balance and observin
no heavier than y’>, a representation theorem would show that that this system could be em
often accompanied by uniqueness theorems, which show how the functions mapping th
functions constituting a temperature scale are positive linear transformations of one anothe
Nothing in my argument turns on the class of mathematical functions to which a scale m

18 A many-one map (homomorphism) can be traded for a one-one map (isomorphism) by
and Zinnes (1963, 26).

19 ‘x is no harder than y’ is true iff a sharp point of x fails to scratch a flat surface of y. An e
as y), and a precedence relation, P (x is less hard than y) (e.g., Hempel, 1952, 59). The congr
transitive, C-irreflexive ("x"y (xCy ? :xPy)), and C-connected ("x"y (:xCy ? (xPy v yPx
empirical system is constituted by the properties of its relations
(e.g., the relation ‘x is no heavier than y’ is transitive and strongly
connected). The analysis of a measuring procedure is complete
once a representation theorem has been proved, i.e., once it has
been demonstrated that there is a function that embeds the system
of qualitative observations in hN; S1; . . . ; Sni, where N is a set of
numbers and Si numerical relations.17 By demonstrating an isomor-
phism18 between the structure of the observational system and the
structure of the numerical system, the theorem guarantees that
inferences drawn in accordance with the arithmetic properties of
the measures correspond to states of the empirical system.

There are various ways to state he properties of the relations
of—i.e., axiomatize—an empirical system capable of ranking the
elements of its domain. The variety stems from differences among
the relations one chooses to observe. The following axiomatization
employs a weak precedence relation R, like ‘x is no harder than y’
(e.g., Krantz et al., 1971, 14).19

(i) "x"y"z (xRy & yRz ? xRz)
(ii) "x"y (xRy v yRx)

R is, in other words, transitive and strongly connected. The corre-
sponding representation theorem demonstrates that any observa-
tional system satisfying (i) and (ii) will preserve all the relations
in the numerical system hRaþ; 6i. The only constraint on a function
that constitutes an ordinal measurement is that xRy iff f(x) 6 f(y).
An empirical system satisfying (i) and (ii) is a weak order. As long
as it can be verified empirically that ‘x is no harder than y’ is tran-
sitive and strongly connected, the system of observations underly-
ing Mohs scale of hardness is a weak order and so suffices for
ranking the hardness of a mineral sample.

Measures of hardness are not quantitative because they lack
additivity. That is, there are no relations among elements in
the observational system that mirror the additive relations in
which elements of the numerical system stand to one another.
As noted earlier, the fact that the difference between the hard-
ness of diamond and the hardness of quartz equals the differ-
ence between the hardness of quartz and the hardness of
fluorite can’t be said to indicate that diamond is as much harder
than quartz as quartz is harder than fluorite. Nor can the average
of several measures of hardness be said to indicate a meaningful
empirical property.

5.2. Extensive measurement

In order to take advantage of additive relations, an empirical
system requires structure beyond that of a weak order. Here too
different axiomatizations are possible, depending on the relations
one chooses to observe. One familiar system is extensive measure-
ment, which is characteristic of physical science. Weight and
length are extensive. Besides a weak ordering relation, extensive
measurement requires a concatenation operation, like putting
weights in the same pan of a balance or placing measuring rods
end to end. Concatenation reduces measurement to counting con-
catenated units, which are equivalent with respect to the ordering
relation. However, intensive quantities like temperature, which
g whether one side descends) and a system of qualitative observations, <weights; ‘x is
bedded in the system of positive real numbers, hReþ ;6i. Representation theorems are

e observational to the numerical systems relate to one another. For instance, all the
r, as in the transformation of Centigrade readings to Fahrenheit readings by 9

5
� Cþ 32.

ay or may not belong.
exchanging the domain for equivalence classes of elements of the domain. See Suppes

quivalent axiomatization is possible by means of a congruence relation, C (x is as hard
uence relation is transitive, symmetric, and reflexive, while the precedence relation is
)). That system can be represented by the numerical system hRaþ ;¼; <i.
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lack a concatenation operation, are apparently additive too. Thus,
concatenation can’t be the whole story of physical measurement.

A concatenation operation, �, is a map from D� D to D.20 The
following axioms characterize an empirical system capable of exten-
sive measure (e.g., Suppes & Zinnes, 1963, 42).

(i) "x"y"z (xRy & yRz ? xRz) (transitivity)
(ii) "x"y"z (x � y) � zRx � (y � z) (associativity)

(iii) "x"y"z (xRy ? x � zRz � y) (monotonicity of concatenation)
(iv) "x"y (:xRy ? $z (xRy � z & y � zRx) (solvability)
(v) "x"y:x � yRx (positivity)

(vi) "x"y (xRy ? $n(n2Int+ and yRnx), where nx is defined
recursively as follows: 1x = x and nx = (n � 1)x � x (Archime-
dean condition)

The representation theorem shows that an observational system
satisfying (i)–(vi) can be mapped into the numerical system
hReþ;6;þi (ibid., 43). Besides the constraint for mapping a weak
order to a numerical system, a function that constitutes an exten-
sive measurement must also satisfy the equation
f(x � y) = f(x) + f(y). Measuring weight by means of a pan balance
is a paradigm case of an extensive measurement procedure. The
domain of the observational system is a set of objects that fit in
the pan; the observed relations are ‘x is no heavier than y’ and ‘x
and y together are no heavier than z’, which corresponds to the
concatenation operation of placing x and y in the same pan and
observing that the relevant pan does not descend. Measurement
theory holds that as long as it can be verified empirically that these
two relations satisfy (i)–(vi), the system of observations underlying
various weight scales suffice for quantifying weight.

Measurement theory may give a rigorous representation of a
measurement procedure, but this alone doesn’t justify the axiom
set as the touchstone for determining the level (ordinal or cardinal)
of that procedure. Consider the domain of an empirical relational
system. ‘‘An empirical relational system is a relational system
whose domain is a set of identifiable entities, such as weights, per-
sons, attitude statement, or sounds’’ is the extent of analysis in
Suppes and Zinnes (1963, 7). They might have in mind a set of
weights used by a merchant. Provided its elements were well
made, such a domain could be shown empirically to satisfy the axi-
oms of a weak order. One could, for example, literally test each or-
dered triple for transitivity by observing its behavior in a pan
balance.21 But the measurement theoretic analysis of weighing pro-
cedures requires more than a set of standard weights; it requires in-
stead an indefinitely large domain of heavy objects. Thus, for Adams,
the domain ‘‘consists of the concrete observable things to which
numerical measures are to be assigned’’ (1979, 208). Apparently,
we can only presume that the enlarged domain behaves like the mer-
chant’s standard weights, because the new domain contains objects,
like Mt. Everest, that can’t be subject to our measurement procedure.
This presumption is not implausible, but let’s be clear about its
foundation.

The scope of terms like ‘‘identifiable entity’’ and ‘‘concrete ob-
servable thing’’ is vague in comparison with terms like ‘‘positive
real number.’’ This is not surprising, as we expect borderline cases
of empirical concepts while we explicitly rule them out for math-
ematical ones. Yet a representation theorem requires us to treat a
collection of concrete observable things as a set in the strict math-
ematical sense. We are required, for instance, to treat all mineral
samples as a totality that is clearly enough defined to constitute
the domain of a function. Hence, we rule out borderline cases.
20 Introducing an operation need not violate the stipulation that an empirical system co
ternary relation by identifying � with the ternary relation x � y = z, provided x � y = z & x �

21 Strong connectedness would hold by definition.
22 Scratched in one direction, kyanite falls between 4.5 and 5 on Mohs scale; in the perp
There is nothing untoward in ruling out borderline cases; doing
so is characteristic of applied mathematics. But by ruling out bor-
derline cases we abandon any pretense of arguing by inductive
generalization that the objects of the domain satisfy the axioms
governing the measurement procedure. This will emerge more
clearly as we examine the grounds for claiming that a domain sat-
isfies specific axioms of extensive measurement.

Measurement depends upon observing a specific outcome—a
scratch in the case of mineral hardness, a descending pan in the
case of weight. Such observations are unproblematic for a trained,
well-equipped technician, observing standard cases. A sharp calcite
point leaves a plainly visible scratch on a flat gypsum surface, and a
pan with two equivalent weights plainly descends when the oppo-
site pan contains only a single, similar weight. Outside the stan-
dard cases, though, an observer can confront borderline
outcomes. Obviously there are perceptual limitations to observing
whether a pan has descended. But borderline cases may also be
due to an outcome’s resembling insufficiently either the paradigm
success or the paradigm failure. A successful scratch of kyanite, for
example, depends upon the direction in which the scratch is at-
tempted.22 Although borderline cases are typical of empirical con-
cepts, they need not undermine theories that employ
mathematical inference, as one can always adopt conventions to deal
with borderline cases (e.g., the pan does not descend unless it plainly
descends). But conventions take us beyond observation. This is ni-
cely exhibited in the decision to treat ‘x is no heavier than y’ as tran-
sitive in spite of counterexamples: Without this idealization, we
forfeit the convenience of arithmetic. It is true that as measurement
procedures become more precise, the counterexamples to transitiv-
ity diminish. But this shouldn’t be taken to mean that convenience
could disappear in principle from the task of verifying that the axi-
oms of extensive measurement have been satisfied. Two of extensive
measurement’s axioms remain problematic even if we treat the axi-
oms as describing, in Michell’s phrase, ‘‘the form the data would ha-
ve . . . were they completely free of error’’ (Michell, 2007, 31). The sort
of idealization demanded by both solvability and the Archimedean
condition is not a matter of error free data.

Solvability postulates, for example, that elements of the domain
are always available to make up the difference between a heavier
object x and a lighter y; that is, an element z can always be found
such that its concatenation with y exactly balances x. The prag-
matic motivation for such a principle is clear: By postulating the
object z, we lay claim to the empirical correlate of a number equal
to the difference between x and y. Given the amorphous character
of empirical domains, and the ease with which borderline cases
can be handled, this postulate is not hard to swallow. But our con-
fidence in solvability is not based on having successfully located
objects that exactly make up the difference between a pair of ob-
jects. Rather, our confidence is based on the benefits derived from
treating an empirically given domain as though relations among its
objects imitate the relations among objects that constitute mathe-
matical continua. Likewise, the same benefits encourage us in our
conclusions about the world of error free data. Abductive reasoning
is at work here. The best explanation for the benefits of treating a
domain as though it satisfies the axioms of extensive measurement
is that objects in that domain satisfy those axioms, at least approx-
imately. That is, our justification for applying real numbers to the
domain is abductive.

The Archimedean condition is likewise impossible to verify by
simply observing the behavior of the domain. Given any element
x of the domain, the condition postulates as many exact copies of
nsists of a domain and a set of relations; for a binary operation is a special case of a
y = w ? z = w (Suppes & Zinnes, 1963, 5).

endicular direction, though, it falls between 6.5 and 7.
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x as one needs to produce, via concatenation, an object which ex-
ceeds any other element. This axiom is also easy to swallow, as an
extensive measurement procedure depends upon an unlimited
supply of identical units. But no one would even begin to check
by direct observation that every object in the domain comes
equipped with indefinitely many exact copies. Here too the antic-
ipation of useful mathematical manipulation—rather than empiri-
cal facts about the domain—informs the conditions of extensive
measurement. Like solvability, the Archimedean condition ideal-
izes by creating objects that eliminate inexactness from the empir-
ical world. Here too, our belief that a particular domain
approximately satisfies this axiom does not rest upon an inductive
generalization from observations of the domain. There is no ques-
tion, for instance, of sampling randomly from the domain of the
empirical relational system. Here too, the warrant is abductive:
The best explanation for the success of the measurement proce-
dure is that the objects of its domain stand, more or less, in the
relation specified by the axiom.

5.3. Conjoint measurement

Conjoint measurement is an advance in measurement theory
that occurred a half century ago (Luce & Tukey, 1964). The axioms
of conjoint measurement gave, for the first time, conditions under
which interval and ratio scales can be constructed from strictly
ordinal data (Krantz et al., 1971, 245ff.). Conjoint measurement
gives, then, conditions under which a thermoscope can be used
as a thermometer, and in this way it provides a rigorous mathe-
matical solution to the problem of nomic measurement. Since psy-
chologists, too, must measure attributes for which no obvious
concatenation operation exists, Michell’s plan to found psycholog-
ical measurement upon conjoint measurement has obvious merit.

In its simplest form, conjoint measurement applies to situations
involving three variables, one of which, P, is a function of the other
two, A and X; i.e., P = f(A, X). The relationship between mass, on the
one hand, and density and volume, on the other, is one such situ-
ation (Michell, 1990, 69); another is Michell’s hypothetical case
in which performance is a function of ability and motivation
(1999, 201ff.). The restrictions on P, A, and X are minimal. P must
be an ordinal variable with infinitely many values, but A and X
may be merely classificatory. An empirical relational system that
satisfies these conditions is conjoint. Not all conjoint systems are
quantitative, like the mass/density/volume system. However, for
a conjoint system in which >

�
, the ordering relation on P, satisfies

(i) double cancellation, (ii) solvability, and (iii) the Archimedean
condition, P, A, and X are all quantitative variables and f is a non-
interactive function, i.e., A and X affect P independently of one an-
other. This is the substance of the representation theorem for an
additive conjoint measurement (Krantz et al., 1971, 257ff.).

Conjoint measurement, especially the double cancellation ax-
iom, is rather less intuitive than extensive measurement. Fortu-
nately, for our purpose it suffices to note the ideal character of
conjoint measurement and the occurrence of both solvability and
the Archimedean condition.23 Plainly a conjoint system depends
upon idealization in exactly the ways an extensive measurement
does. Here too, our belief that a particular domain approximately
satisfies a conjoint system does not rest upon an inductive general-
ization from observations of the domain. It rests, instead, upon an
23 Solvability for a conjoint system is uncomplicated: Given three of four values ai, aj, xi (o
equation can always be found. Solvability is not directly testable (Michell, 1990, 79). The ca
it too makes an existential claim whose justification faces limitations in time and technol

24 Körner (1964) shows in detail that empirical predicates obey a modified two-valued l
25 See Körner (1962) for a full discussion of the differences between an empirically contin

one tied to direct observations, is not dense in the mathematical sense, and so lacks additi
cases.
objective inference from the benefits of treating the objects as
though they satisfy the axioms.

Measurement theorists are not oblivious to the gap between
domains that confront empirical scientists and the domains of
empirical relational systems. Krantz et al. write, ‘‘The axioms
purport to describe relations, perhaps idealized in some fashion,
among certain potential observations . . .’’ (1971, 26, my italics).
But they haven’t, I believe, stressed sufficiently that the idealiza-
tions arise from emulating the very numerical system whose
structure is to be proved isomorphic to that empirical relational
system. Thus, a representation theorem establishes at most the
existence of a function from a quasi-empirical relational system
to a numerical relational system. Here a quasi-empirical system
is a set-theoretic counterpart of a domain of empirical investiga-
tion, constructed by substituting exact mathematical domains
and concepts for inexact empirical ones. There can be no struc-
tural isomorphism between a genuinely empirical relational sys-
tem—i.e., a system whose concepts are strictly empirical—and a
numerical relational system. For empirical concepts, which are
inexact, obey a different logic from mathematical concepts,
which are exact. Because they admit borderline cases, for in-
stance, empirical concepts don’t obey the law of excluded mid-
dle.24 In truth, a representation theorem describes the idealized
assumptions we bring to a genuine empirical relational system
in order to produce a hypothetico-deductive system that can take
advantage of the inferential powers of arithmetic. Making explicit
our idealizations is a worthwhile project, but it’s misguided to
characterize an empirical relational system, as Michell does, as
presenting ‘‘observable, surface structures enabling tests of fea-
tures of quantitative structures’’ (2007, 36). Surface structures
are quite the opposite of idealized structures.

Instead of sharing the structure of a numerical relational system,
a genuine empirical relational system is identified with a quasi-
empirical system and the latter shares the structure of a numerical
system. Identification consists in replacing inexact concepts by ex-
act ones. For instance,

[A] basic statement of an equality involves the replacement of
an empirical non-transitive relation by the mathematical rela-
tion of equality. (Körner, 1964, 283)

But replacement is not always as simple as replacing a concept that
admits borderline cases with a concept that has sharp edges. Thus,
exchanging empirical continuity for a concept suitable to mathe-
matical inference takes more than replacing each inexact element
of the concept with an exact counterpart.

A basic statement of continuous transition involves the replace-
ment of an empirical notion of continuity, definable in terms of
a finite set of inexact classes, by a mathematical notion of con-
tinuity, defined in terms of a non-denumerably infinite set of
exact classes. (ibid., 282–283)25

Identification, then, is a matter of choosing to treat a thing of one
sort as a thing of another sort in order to achieve, in Körner’s phrase,
deductive unification. The warrant for identifying a domain of
empirical investigation with a quasi-empirical domain is, obviously,
the pragmatic value in doing so. Since ancient times, physical sci-
ence has treated empirical predicates as exact, quasi-empirical
r ai, xi, xj) there exists a fourth, xj (aj) such that aixi = ajxj. I.e., a solution to the preceding
se is similar for the Archimedean condition, which is much more complicated to state;
ogy.
ogic different from the classical two-valued logic.
uous series and a mathematical continuous one. An empirically continuous series, i.e.,
ve structure; however, it is empirically dense, a notion defined in terms of borderline
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ones, though with hardly a thought. This maneuver is already
implicit in pedestrian applications of mathematics. Numerals are
applied, in the first place, as inexact, empirical predicates, the re-
sults of counting or measurement.26 Since empirical predicates like
‘‘two’’ and ‘‘one and a half meters’’ admit borderline cases, they must
be identified with exact, mathematical ones in order to take advan-
tage of the inferential powers of arithmetic. Thus, some measure-
ment statements are descriptive and others are merely
representations. The former involve inexact, empirical predicates,
while the latter involve exact, non-empirical predicates. Only the
latter are employed in prediction and explanation.

The quasi-empirical character of empirical relational systems
undermines the idea that measurement theory provides observa-
ble surface structures capable of refuting the hypothesis that a
given procedure yields a cardinal measurement. For predictive
and explanatory success will generally trump observations pur-
porting to show that an attribute is not quantitative. One could,
I suppose, appeal to measurement theory to explain why a par-
ticular procedure failed to yield quantitatively valuable results.
But even here the failure of the domain to satisfy the axioms
could be due to technological limitations, and someone with
faith in the procedure would be unmoved. Likewise, the quasi-
empirical character of measurement theory puts the lie to the
proposal that observable surface structures could, in the absence
of predictive and explanatory success, establish the level of a
measurement procedure. The level of a measuring procedure
rests, then, on a pragmatic foundation, not an observational
one. New procedures should be judged pragmatically, and the
point of our historical investigation of the temperature concept
is to provide a concrete paradigm for such judgments.
6. Realist measurement theory

So far, the critique of measurement theory as the touchstone
of quantity depends upon an empiricist or representational for-
mulation of the theory. In order to argue that the example of
thermometry is a more suitable touchstone, it’s necessary to
show that an alternative formulation of measurement theory,
one that escapes problems arising from a limited domain of ob-
jects, is equally problematic.

Michell argues for a realist version of measurement theory that
contrasts with the representational version (Michell, 2005, 2007).
The realist wants to avoid the idealizations that infect representa-
tional measurement theory with ‘a slavish imitation of the number
system’ (Michell, 2007, 33–34; cf. Suppes & Zinnes, 1963, 45). In
the same vein he hopes to avoid treating numbers as abstract enti-
ties, i.e., as entities existing outside space and time. Michell ob-
jects, in particular, to employing entities (i.e., numbers) that are
‘‘related externally to features of [an empirical] situation by human
convention’’ (2005, 287). The point of realist measurement theory,
then, is to explain measurement in a naturalistic fashion such that
‘‘the realm of space and time is world enough’’ for understanding
nature (Michell, 2007, 33).

Representationalists are not anti-realist, and indeed empiricism
of the last 60 years is staunchly realist. They believe, like Michell,
that the truth of statements of science and mathematics requires
objects that are independent of observation and correctly described
by those statements (Michell, 2004, 286). Thus abstract objects, in
particular, sets, were established in the philosophical landscape
thanks to the indispensability argument of Quine and Putnam
(Quine, 1961, 1–19 and especially Putnam, 1971, 337ff.). According
26 The criteria for applying inexact numerical predicates can presumably be given in term
not constitute an axiomatization.

27 In the 2007 formulation Michell restricts Q to quantitative attributes for which ‘‘a + b
to that argument, our ontology requires mathematical objects be-
cause they are indispensable for science.

If the numericalization of physical magnitudes is to make sense,
we must accept such notions as function and real num-
ber. . . . Yet if nothing really answers to them, then what at all
does the law of gravitation assert? For that law makes no sense
at all unless we can explain variables ranging over arbitrary dis-
tances (and also forces and masses, of course). (Putnam, 1971,
341)

Putnam turns to abstract objects, because it is preferable to hav-
ing to postulate the existence of an actual infinity of physical ob-
jects (339). Empiricists are not entirely comfortable about
abstract objects, because it is problematic to say how humans
come to know about them (Benacerraf, 1973). Quine, whose
views on metaphysics and epistemology have been dominant
since the collapse of logical positivism, solves the problem by
undermining the special status of physical objects. He maintains
that one’s ontology consists entirely of entities—physical objects,
irrational numbers, etc.—postulated in order to ‘‘round out and
simplify our account of the flux of experience’’ (1961, 18). We
are committed to just those entities that do the best job of
rounding out and simplifying. Thus, Quine points out

. . . no measurement could be too accurate to be accommodated
by a rational number, but we admit the [irrationals] to simplify
our computations and generalizations. (1986, 400)

Empiricists accept the existence of mathematical objects, then, on
pragmatic grounds similar to the grounds presented in §4 for the
quantitative temperature concept.

Michell finds a ‘worldly’ alternative to representational mea-
surement theory in Hölder’s axioms for an unbounded continuous
quantity, the domain of which is all possible levels of an attribute.
Such domains are ‘‘better suited, conceptually, to account for mea-
surement . . . if only because no actual set of rigid, straight rods
could ever instantiate all possible lengths’’ (33, my italics). Michell
formulates Hölder’s axioms for an unbounded continuous quantity
Q, with levels a, b, c, d, as follows.

1. Given any magnitudes, a and b, of Q, one and only one of the fol-
lowing is true:

(i) a is identical to b (i.e., a = b and b = a);
(ii) a is greater than b and b is less than a (i.e., a > b and b; or

(iii) b is greater than a and a is less than b.
2. For every magnitude, a, of Q, there exists a b in Q such that b < a.
3. For every pair of magnitudes, a and b, in Q, there exists a mag-

nitude, c, in Q such that a + b = c.
4. For every pair of magnitudes, a and b, in Q, a + b > a and

a + b > b.
5. For every pair of magnitudes, a and b, in Q, if a < b, then there

exists magnitudes, c and d, in Q such that a + c = b and d + a = b.
6. For every triple of magnitudes, a, b, and c, in Q

(a + b) + c = a + (b + c).
7. For every pair of classes, / and w, of magnitudes of Q, such that

(i) each magnitude of Q belongs to one and only one of / and w;
(ii) neither / nor w is empty; and

(iii) every magnitude in / is less than each magnitude in w, there
exists a magnitude x in Q such that for every other magni-
tude, x0, in Q, if x0 < x, then x0 2 / and if x0 > x, then x0 2 w
(x may belong to / or w). (Michell, 1999, 51–53; cf. 2007,
20–21).27
s of inexact, qualitative predicates. But owing to their inexactness those criteria would

= c iff c is entirely composed of discrete parts a and b.’’
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Hölder’s axioms, says Michell, specify the structure that the lev-
els of an attribute ‘‘must possess if any two of them are to stand in
ratios which can be expressed numerically’’ (1999, 59). By explain-
ing28 how different relational systems (extensive, conjoint, etc.) sus-
tain a ratio scale they serve as the deep theoretical structure
underlying measurement (208). And thus Michell relegates empiri-
cal systems to presenting ‘‘the kinds of observable, surface structures
enabling tests of features of quantitative structure.’’

The realism of Michell’s alternative lies in the commitment to
the existence of all possible levels of an attribute, viz., the entities
that Hölder’s axioms seek to describe. If, as Michell maintains, the
levels of an attribute (and relations between them) exist in space
and time, then numbers, which are ratios between magnitudes,
are part of the natural world. In that case there is no need to invoke
abstract entities (1999, 59–62).

Some will be skeptical of invoking systems of attributes to deal
with there being ‘‘no actual set of rigid, straight rods [to] instanti-
ate all possible lengths.’’ In the first place, if there are unactualized
possible lengths, then there are presumably objects outside space
and time. According to Hölder’s scheme, length is an unbounded,
continuous quantity, and so there is no greatest length. But if con-
temporary cosmology is right, the universe is finite, and so there
must be levels of length that are not instantiated in space and time.
Michell seems to face the same problem as the representational-
ist—too few actual entities to fill the theory’s domain. Secondly,
attributes have been a source of philosophical discomfort since
the days of Plato and Aristotle. While Plato ‘located’ attributes
(i.e., forms) outside space and time, Aristotle scoffed at the sugges-
tion, insisting forms must be immanent. Michell follows Aristotle’s
worldly option.

While any specific attribute can only ever exist at some partic-
ular spatiotemporal location as a feature of something or other,
it owes no logical allegiance to any location and in this sense is
general. For this reason attributes are called ‘universals’. (2005,
286)

Plato and Aristotle agreed on both the reality and the generality of
attributes. While Plato appealed to transcendence to explain how dis-
tinct objects could share the same attribute, Aristotle claimed that
the same form (humanity, say) could be an ingredient in distinct indi-
viduals. Both explanations are implausible. Michell hopes to avoid
their troubles by making attributes particulars whose generality
arises from ‘owing no logical allegiance’ to particular spatiotemporal
locations. However, if Plato’s humanity (weight, temperature, etc.)
owes no logical allegiance to Plato or his spatiotemporal location, it
could have been a feature of Aristotle or his spatiotemporal location.
But how does one individuate Plato’s humanity from Aristotle’s, if not
by reference to the concrete particulars in which they are instanti-
ated? The difficulty of individuating attributes and possibilia
prompts Quine to reject them, of course (1961, 4 and 10). Further-
more, Quine’s ontology of physical objects and sets renders attributes
unnecessary for scientific discourse.

But Michell finds additional advantages in a realist measure-
ment theory. He notes that although ‘‘axiom systems, like those
for extensive and conjoint systems, obtain for all attributes mea-
sured in physics, . . . no one in the history of physics may ever have
made observations relating directly to the axiom systems for
extensive or conjoint measurement’’ (2007, 32). Representational
measurement theory cannot explain this anomaly, but realist mea-
surement theory can.

Take the case of length. If we come to the above example of an
empirical extensive system armed with a concept of length as
28 The explanations substitute the (weaker) Archimedean condition for Holder’s 7th axio
29 The reference is to the Suppes and Zinnes axioms for extensive measurement.
an unbounded continuous quantity, in the spirit of Hölder’s axi-
oms, then, knowing what we do about rigid straight rods and
their behavior in standard circumstances, we have no trouble
inferring that the six axioms given above29 are true. (32–33)

That is, Hölder’s axioms explain why physical scientists feel no urgency
to test whether the properties they investigate satisfy the axioms of an
empirical relational system: An axiomatization of length in the spirit of
Hölder—and our experience with rigid rods—imply that the axioms of
extensive measurement hold for rigid rods. Our acceptance of Hölder’s
theory of continuous quantity also explains our inclination to blame the
data rather than the axioms when observations appear to falsify the axi-
oms for an empirical relational system (33). Michell hastens to note, ‘‘Of
course, in accord with the values of science, this theory is ultimately
based upon observational evidence, but it is not based upon direct tests
of these six axioms or of any others’’ (ibid.). This claim is crucial to Mic-
hell’s preference for realist over empiricist formulations of measure-
ment theory. For it implies that only the former claim the authority
of direct empirical tests.

Empiricists don’t attach the same importance as Michell to di-
rect empirical tests. They insist on evaluating observational evi-
dence holistically, and so consider as well the practical value of
the hypothesis being tested. An empiricist could embrace a concept
of length in the spirit of Hölder’s axioms, but not on observational
grounds alone. In the empiricist tradition of the last 60 years, then,
the domain of Hölder’s axioms are in the same position as the do-
main for the axioms for extensive measurement: Their domains,
once they are postulated, stand or fall with respect to the benefits
they offer toward understanding nature.

Michell is suspicious of postulation, and he reminds readers that
postulation shares all the advantages of theft over honest toil (2007,
24). But I don’t see that a realist program has any choice but to postu-
late attributes (as well as sets) and argue for the pragmatic value of
doing so. This is clearest in view of the theoretical role of Hölder’s axi-
oms. They are significant because they permit a mathematical proof
that an unbounded, continuous quantity shares the structure of the po-
sitive reals. The proof requires that a finely articulated structure be
packed into axioms. It is no accident, for example, that the levels of a
continuous attribute mirror both the density and the completeness
of the reals. Indeed, Hölder’s seventh axiom is identical to Dedekind’s
axiom of completeness, except that sets of attributes are substituted
for sets of rationals. Structure like that cannot be put to direct empirical
test because our observations are not that fine-grained. Thus, empirical
facts about the domain can confirm Hölder’s axioms only in the light of
the pragmatic value of the mathematics whose structure Hölder’s axi-
oms imitate. The slavish imitation that concerns Suppes and Zinnes is
equally a problem for Michell.

The realist formulation of measurement theory is no more clo-
sely tied to observation than its empiricist rival, and both versions
are guilty of tailoring their axioms for the sake of representation
theorems. Hölder’s axioms, like those of Suppes and Zinnes, involve
exact concepts; both involve quasi-empirical structures. Thus,
empirical tests of either involve identifying inexact concepts with
exact ones. And since we do not observe instances of exact con-
cepts, the grounds of identification are, therefore, pragmatic.

Michell will reject my distinction between empirical and quasi-
empirical for ignoring the transcendental ground (in Kant’s sense)
of measurement. According to Michell, ‘‘The fact that that measure-
ment of physical attributes occurs at all implies that there must be
something about the character of the relevant attributes that makes
it possible’’ (2007, 33). Measurement rests ‘‘upon the possibility of
real-world systems being similar in structure to mathematical sys-
tems’’ (34, my italics). As Hölder’s theorem demonstrates that the
m (Michell, 1999, 211).
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real number structure is shared by the ratios of magnitudes of an un-
bounded continuous quantity, Hölder’s axioms, far from being qua-
si-empirical, describe what the empirical world must be like in order
for measurement to be possible. Undoubtedly structural similarity is
necessary for mathematics to be applicable to nature; but structures
can be similar without being isomorphic. Provided length, weight,
etc. behave approximately as Hölder’s axioms prescribe, then the
mathematics of continua will be applicable.30 Structural similarity
in the sense of mathematical isomorphism is too strong a require-
ment, and the situation in contemporary physics supports this claim.

A fundamental problem in contemporary physics is unifying
quantum mechanics with general relativity. Quantum field theories
have successfully accounted for three of the four fundamental
forces, electromagnetic, and weak and strong nuclear forces. But,
as Maddy puts it, gravitational force ‘‘has an annoying habit of gen-
erating impossible (infinite) values’’ (1992, 285). Physicists propose
various strategies for dealing with these anomalies, among them
abandoning the continuity of space and time. Thus, Feynman writes,

I believe that the theory that space is continuous is wrong,
because we get these infinities and other difficulties . . . (quoted
in Maddy, 1992, 285)

And another physicist, Isham, speculates,

. . . it is clear that quantum gravity, with its natural Planck
length, raises the possibility that the continuum nature of
spacetime may not hold below this length, and that a quite dif-
ferent model is needed. (ibid.)

These physicists consider it a genuine possibility that length and dis-
tance are not continuous quantities. But presumably neither would
claim that the correctness of their speculations would reveal that
time-tested methods for measuring length and distance were a sham.
For the purpose of understanding quantum gravity, a model in which
length and distance are continuous quantities may not be appropriate.
But the shortcomings of the continuous model wouldn’t cast doubt
upon previously successful methods of measuring length and distance.
Success suffices to defend these methods, and that success is explicable
as long as length and distance are approximately continuous.

Models enable us to draw inferences in accordance with mathe-
matics, i.e., they achieve deductive unification. This they accomplish
by means of exact concepts. Black advanced the science of heat by
modeling temperature as a continuous quantity, i.e., by identifying
readings from the thermometer with a particular set of exact con-
cepts. His advances were possible because temperature approximates
a continuous quantity, and it approximates a continuous quantity
insofar as there are tangible benefits to treating it as continuous. In
sum, the structural similarity that makes applied mathematics possi-
ble is a weaker notion than the one Michell needs in arguing that the
world must conform to Hölder’s axioms if measurement is to be pos-
sible. Satisfaction of something like the conditions of empirical conti-
nuity in Körner (1962) will suffice for measurement.

7. Conclusion

Michell dismisses the pragmatic defense of treating psycholog-
ical attributes as quantitative (1999, 20ff; cf. 217ff.). When Lord
30 According to Michell, well-known questions about ‘the unreasonable effectiveness of m
(2005, 292). But neither Wigner nor anyone else is puzzled about the effectiveness of re
unreasonable effectiveness are, rather, characterized by our getting something out of the m
quantum mechanics, were not suggested by physical observations but chosen ‘‘for their a
measurement.

31 There is some basis for this charge but it is misleading. While Stevens accepts cod
measurement by the types of empirical operations necessary to assign a numeral to ‘‘the as
only for interval and ratio scales (27).
and Novick argue that, ‘‘To the extent that this scaling produces
a good empirical predictor the stipulated interval scaling is justi-
fied’’ (Lord & Novick, 1968, 22), he responds that they are ignoring
the fundamental scientific issue of whether or not an hypothesized
attribute is quantitative.

Only when such a theory has been subjected to some experi-
mental test sensitive to the presence or absence of quantitative
structure in the hypothesized attribute can any conclusions be
drawn about whether or not test scores are interval scale mea-
sures of anything. Weaker tests, such as the test scores being a
good predictor of related criteria, are not sensitive to the pres-
ence or absence of quantitative structure in the underlying
attribute because no matter which way they turn out they can-
not rule out the hypothesis that this attribute is quantitative.
(1999, 21)

When Michell observes that predictive failure of weaker tests won’t
rule out the hypothesis that an attribute is quantitative, he implies
that the stronger tests made possible by measurement theory could
rule out the hypothesis that an attribute is quantitative. But it’s a
myth to think such a test might once and for all rule out an hypoth-
esis of quantity. On the one hand, failure to satisfy the axioms for
quantity could be blamed upon the testing instrument, as would
have been the case had alcohol thermometers been used instead
of mercury thermometers. On the other hand, the exact, quasi-
empirical character of the axioms, in contrast to the inexact, empir-
ical character of observations, gives psychologists an avenue on
which to shunt contrary data. If treating an underlying attribute,
say intelligence, as quantitative allows one to employ mathematics
to bring order to the data, then a plausible explanation for this suc-
cess is that the attribute is approximately quantitative. If the same
presumption leads to higher-level concepts, analogous to Black’s
specific and latent heats, then it’s hard to imagine what additional
scientific purpose could be served by bringing Hölder’s axioms to
bear.

Acceptance of the pragmatic approach to quantification does
not, of course, entail the existence of quantitative psychological
attributes. The pragmatic value must be demonstrated. The con-
ceptual advance that we admired in temperature measurement
has no obvious analogue in, for instance, intelligence measure-
ment. The general intelligence factor, g, does not occur in psycho-
logical laws in the straightforward way that temperature occurs in
m1c1(t1 � tf) = m2c2(tf � t2) and DQ = mcDt. g correlates mathe-
matically with academic success, income, etc., but it is not clear
that the correlation provides greater understanding when g is trea-
ted as cardinal rather than ordinal data. This issue could be settled
affirmatively by calling attention to a conceptual advance analo-
gous to Black’s introduction of specific and latent heats. The statis-
tical character of psychological concepts and laws will, however,
complicate any attempt to demonstrate such an analogy. That pro-
ject is better saved for another occasion.

Michell blames psychologists’ acceptance of the measurability
thesis upon their unreflective commitment to measurement as
the assignment of numerals to objects or events according to rules
(1999, 20–21; cf. Stevens, 1951, 1). By failing to exclude any attri-
butes from the practice of measurement this definition of measure-
ment cancels the scientific task (1999, 77; 216).31 The history of
temperature suggests a middle path between embracing a research
athematics’ (cf. Wigner, 1960) result from representational accounts of measurement
al numbers, which are idealizations of empirical observations. Wigner’s examples of

athematics that we did not put in (10). Thus complex numbers, which are crucial for
menability to clever manipulations’’ (7). In fact, none of Wigner’s examples involve

ing (e.g., 0 = female, 1 = male) as measurement, he distinguishes different types of
pects of objects’’ (1951, 23). Stevens agrees with Michell that ‘‘quantity’’ is appropriate
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program dictated by measurement theory and simply abandoning
the scientific task of quantification. It is open to psychologists to
be encouraged or discouraged in their attempts to quantify mental
attributes by comparing their accomplishments with Black’s.32
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