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ABSTRACT

All too often researchers perform a Multivariate Analysis of Variance
(MANOVA) on their data and then fail to fully recognize the true multivariate
nature of their effects. The most common error is to follow the MANOVA with
univariate analyses of the dependent variables. One reason for the occurrence of
such errors is the lack of clear pedagogical materials for identifying and testing
the multivariate effects from the analysis. The current paper consequently reviews
the fundamental differences between MANOVA and univariate Analysis of
Variance and then presents a coherent set of methods for plumbing the multivar-
iate nature of a given data set. A completely worked example using genuine data
is given along with estimates of effect sizes and confidence intervals, and an
example results section following the technical writing style of the American
Psychological Association is presented. A number of issues regarding the current
methods are also discussed.

INTRODUCTION

Multivariate statistical methods have grown increasingly popular over the past
twenty-five years. Most graduate programs in education and the social sciences
now offer courses in multivariate methods. Statistical software such as SAS and
SPSS that provide canned routines for conducting even the most complex multi-
variate analyses can also be found on the computers of modern educational re-
searchers, psychologists, and sociologists, among other scientists. A wide array of
multivariate textbooks written for both novices and experts can likewise be found
on the bookshelves of these scientists. The continued proliferation of multivariate
statistical procedures can no doubt be attributable to the belief that models of
nature and human behavior must often account for multiple, inter-related varia-
bles that are conceptualized simultaneously or over time. Multivariate Analysis of
Variance (or MANOVA) is one particular technique for analyzing such multi-
variable models.

In MANOVA the goal is to maximally discriminate between two or more
distinct groups on a linear combination of quantitative variables. For instance, a
psychologist may wish to investigate how children educated in Catholic schools
differ from children educated in public schools on a number of tests that measure:
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(1) reading, (2) mathematics, and (3) moral reasoning skills. Using MANOVA the
psychologist could examine how the two groups differ on a linear combination of
the three measures. Perhaps the Catholic school children score higher on moral
reasoning skills relative to reading and math when compared to the public school
children? Perhaps the Catholic school children score higher on both moral reason-
ing skills and math relative to reading when compared to the public school child-
ren? These potential outcomes, or questions, are multivariate in nature because
they treat the quantitative measures simultaneously and recognize their potential
inter-relatedness. The goal of conducting a MANOVA is thus to determine how
quantitative variables can be combined to maximally discriminate between dis-
tinct groups of people, places, or things. As will be discussed below this goal also
includes determining the theoretical or practical meaning of the derived linear
combinationor combinationsof variables.

Many excellent journal articles and book chapters have been devoted to
MANOVA in the past twenty-five years. Chapters by Huberty and Petoskey
(2000) and Weinfurt (1995), for instance, provide lucid introductions to this
complex and conceptually powerful statistical procedure. Multivariate textbooks
by Stevens (2001), Tabachnick and Fidell (2006), and Hair, et al. (2006), to name
a few, also provide outstanding treatments of MANOVA. Despite these resources,
however, a central premise of the current paper is that many published applica-
tions of MANOVA fail to exploit the conceptual advantage of conducting a
multivariate, rather than univariate, analysis. Recent reviews (Huberty & Morris,
1989; Keselman, et al., 1998; Kieffer, Reese, & Thompson, 2001), for instance,
have shown that studies employing MANOVA to explore group differences on
multiple quantitative variables often fail to realize the multivariate nature of the
reported effects. Instead, authors tend to resort to ‘‘follow-up’’ univariate statisti-
cal analyses to make sense of their findings (viz., following a significant
MANOVA with multiple ANOVAs). One potential reason for these bad habits of
data analysis is a paucity of clear examples that demonstrate appropriate pro-
cedures. Consequently, we draw upon the work of Richard J. Harris (1993, 2001;
Harris, M., Harris, R., & Bochner, 1982) and Carl J. Huberty (Huberty, 1984;
Huberty & Smith, 1982; Huberty & Petoskey, 2000; also, see Enders, 2003) in the
current paper to demonstrate a general strategy for conducting MANOVA. This
strategy focuses on the linear combinations of variables, or multivariate compo-
sites, that are the numerical and conceptual basis of any multivariate analysis;
subsequently, specific techniques for identifying and testing these composites for
statistical significance will be shown. An approach for interpreting and labeling
the multivariate composites will also be presented, and an example write-up of
MANOVA results that follows APA style will be provided.

MANOVA vs. ANOVA

Simply defined, MANOVA is the multivariate generalization of univariate
ANOVA. In the latter analysis mean differences between two or more groups are
examined on a single measure. For instance, a psychologist may wish to study the
mean differences of ethnic groups on a continuous measure of implicit racism, or
an educator may wish to examine the differences between boys and girls regard-
ing their mean performance on a test of mathematical reasoning ability. In com-
parison, and as stated above, the goal in MANOVA is to examine mean differ-
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ences on linear combinations of multiple quantitative variables. Ethnic groups,
for instance, could be compared on a combination of explicit and implicit meas-
ures of racism, or boys and girls could be compared with regard to their mean
performances on a combination of mathematical, spatial, and verbal reasoning
tasks. In both instances the variables would be analyzed simultaneously (i.e.,
multivariately) rather than individually (i.e., univariately).

Because the differences between these univariate and multivariate procedures
can best be explicated by way of example, we will proceed with a complete
analysis of genuine data. Specifically, we will draw data from a Master’s thesis
by Iwasaki (1998) in which the personality traits of different cultural groups were
examined.1 In addition to other measures, college students in Iwasaki’s study
completed the NEO PI-r (Costa & McCrae, 1992), a popular questionnaire that
measures the Big Five personality traits: Neuroticism, Extraversion, Openness-to-
Experience, Agreeableness, and Conscientiousness. The students were also classi-
fied into three groups:

EA:  European Americans (Caucasians living in the United States their
entire lives)

AA:  Asian Americans (Asians living in the United States since before the
age of 6 years)

AI:  Asian Internationals (Asians who moved to the United States after their
6th birthday)

The three groups form mutually exclusive categories, and the personality ques-
tionnaire yields quasi-continuous trait scores (viz., they may range in value from
0 to 192) that are assumed to represent an interval scale. The categorical grouping
variable will herein be referred to as the independent variable, and the quasi-
continuous trait measures will be referred to as the dependent variables. Note this
terminology will be used throughout solely for the sake of convenience and is not
intended to imply a causal ordering of the variables. As is well known, attributing
cause is a logical and theoretical task that extends beyond the bounds of statistical
analysis.

The goal in univariate ANOVA is to examine differences in group means on a
single, continuous variable. Therefore each dependent variable (Big Five trait
score) is analyzed and interpreted separately. The results for the univariate tests of
overall differences among the EA, AA, and AI groups from the SPSS MANOVA
procedure (which can also be used to conduct ANOVAs) are as follows:

EFFECT .. GRP
Univariate F-tests with (2,200) D. F.

Var    Hypo. SS      Error SS      Hypo. MS      Error MS        F     Sig. F     eta-sqr

Neu       456.85      90650.37        228.43          453.25         .50    .605        .01
Ext    12180.69      68087.41      6090.35          340.44     17.89    .000        .15
Ope     8773.97      58283.59      4386.99          291.42     15.05    .000        .13
Agr     6550.10      61033.79      3275.05          305.17     10.73    .000        .10
Con     1297.48      68134.10        648.74          340.67       1.90    .152        .02
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Using a Bonferroni adjusted a priori p-value of .01 (.05/5), the population means
for the three groups are judged to be unequal on the extraversion, openness-to-
experience, and agreeableness traits. The largest univariate effect is noted for
extraversion, for which 15% (η2 = .15) of the variability in the extraversion trait
scores can be explained by group membership. This effect seems small, although
it could be judged as large using Cohen’s (1988) conventions (.01 = small, .06 =
medium, .14 = large). It should also be noted the homogeneity of population
variances assumption was tested for each analysis and no violations were noted.

Each of the statistically significant univariate, omnibus effects could be fol-
lowed by complex or paired comparisons to clarify the nature of the mean differ-
ences between the EA, AA, and AI groups. The results from such analyses would
be interpreted separately for each of the Big Five trait scores because the univar-
iate approach essentially treats any potential correlations among the dependent
variables as meaningless.

By comparison a multivariate approach takes into account the inter-correla-
tions among the Big Five personality traits. As can be seen in the following SPSS
CORRELATION output, a number of the trait scores are modestly correlated:

Correlations

Agreeable-    Conscien-
Neuroticism  Extraversion  Openness    ness             tiousness

Neuroticism                     1.000             -.255**        -.019          -.097            -.397**

Extraversion                    -.255**          1.000            .363**         .011             .371**

Openness                        -.019              .353**        1.000            .232**          .125

Agreeableness                -.097              .011            .232**       1.000             .097

Conscientiousness          -.397**            .371**          .125            .097           1.000

** Correlation is significant at the 0.01 level (2-tailed)

Reasoning multivariately with the same data, the question becomes: In what way
or ways can the Big Five traits be combined to discriminate among the three
groups? Perhaps a combination of high extraversion and low neuroticism sepa-
rates the groups, or perhaps a combination of high extraversion, high agreeable-
ness, and low conscientiousness discriminates among the three groups? These
questions demonstrate how a multivariate frame of mind entails considering the
dependent variables simultaneously rather than separately. Whether or not such
questions are justified or meaningful is an issue that must be addressed by any
researcher confronted with the prospect of conducting a MANOVA. In the current
example this issue manifests itself as follows: Are we truly interested in examin-
ing the multivariate, linear combinations of Big Five traits, or are we content with
considering each trait separately? Another way of considering the issue regards
the intent to interpret the multivariate effect that might underlie the data. For the
current example, if we have no intention of interpreting the multivariate compo-
sites (that is, the linear combinations of traits  the dependent variables), then the
univariate analyses above are perfectly sufficient. There is certainly no shame in
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conducting multiple ANOVAs and separately interpreting the results for each
dependent variable. It is more than a methodological faux pas, however, to
conduct a MANOVA with no intent of interpreting the multivariate combination
of variables.

In fact, two common errors seem to be associated with the failure to accurately
discriminate between univariate and multivariate approaches toward data analy-
sis. First, many researchers believe that conducting a MANOVA will provide
protection from Type I error inflation when conducting multiple univariate
ANOVAs. Following this erroneous reasoning, for instance, we would first
conduct a MANOVA for the personality data above and, if significant, judge the
statistical significance of the univariate ANOVAs based on their unadjusted
observed p-values rather than their Bonferroni-adjusted p-values. Although such
an analysis strategy is common in the literature, it is not to be recommended
because the Type I error rate will only be properly controlled when the null
hypothesis is true (Bray & Maxwell, 1982), which is an unlikely occurrence in
practice and therefore an unrealistic assumption. Type I error inflation can be
controlled through the use of a Bonferroni adjustment or a fully post hoc critical
value derived from the results of a MANOVA, but the researcher must make the
extra effort to compute the critical values against which to judge each univariate
F-test (see Harris, 2001, and below). To reiterate, simply running a MANOVA
prior to multiple ANOVAs will not generally provide appropriate protection
against Type I error inflation. The extra step of computing the Bonferroni-adjust-
ed critical values or the special MANOVA-based post hoc critical value must also
be taken.

Second, many researchers believe that ANOVA should be used as a follow-up
procedure to MANOVA for interpreting and understanding the multivariate ef-
fect. While common, this analysis strategy is based on the misconception that
results from multivariate analyses are simply additive functions of the results
from univariate analyses. As will be described below, however, the multivariate
information from a MANOVA is contained in the linear combinations of depend-
ent variables that are generated from the analysis. Conducting an ANOVA on
each of the dependent variables following a MANOVA completely ignores these
linear combinations. Furthermore, the conceptual meaning of the results from a
series of ANOVAs will not necessarily match the conceptual meaning of the
results from a MANOVA. In other words, the multivariate nature of the results
will not necessarily emerge from a series of univariate analyses. Techniques for
identifying and exploring the linear combinations of variables that result from a
MANOVA are therefore of critical importance.

CONDUCTING THE MANOVA

Returning to the Big Five trait example, let us decide to pursue a truly multi-
variate approach. In other words, let us commit to examining the linear combina-
tions of personality traits that might differentiate between the European American
(EA), Asian American (AA), and Asian International (AI) students. Assuming
that no a priori model for combining the Big Five traits is available, these six
steps will consequently be followed:
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1. Conduct an omnibus test of differences among the three groups on
linear combinations of the five personality traits.

2. Examine the linear combinations of personality traits embodied in the
discriminant functions.

3. Simplify and interpret the strongest linear combination.
4. Test the simplified linear combination (multivariate composite) for

statistical significance.
5. Conduct follow-up tests of group differences on the simplified multi-

variate composite.
6. Summarize results in APA style

If an existing model for combining the traits were available, a priori, then an
abbreviated approach, which will be discussed near the end of this paper, would
be undertaken.

Step 1: Conducting the Omnibus MANOVA.

The omnibus null hypothesis for this example posits the EA, AA, and AI
groups are equal with regard to their population means on any and all linear
combinations of the Big Five personality traits. This hypothesis can be tested
using any one of the major computer software packages. In SPSS for Windows
the General Linear Model (GLM) procedure can be used or the dated MANOVA
routine can be run through the syntax editor. There are several slight advantages
to using the MANOVA syntax; consequently these procedures are employed
herein, and the complete annotated syntax statements can be found in the Appen-
dix. The multivariate results from SPSS MANOVA are:

EFFECT .. GRP
Multivariate Tests of Significance (S = 2, M = 1 , N = 97 )

Test Name        Value       Approx. F       Hypoth. DF       Error DF       Sig. F

Pillais               .41862      10.42982            10.00           394.00             .000
Hotellings        .53723      10.47592            10.00           390.00             .000
Wilks               .62327      10.45320            10.00           392.00             .000
Roys                 .25313
Note.. F statistic for WILKS’ Lambda is exact.

As can be seen, four test statistics are reported for the group effect: ‘‘Pillais’’,
‘‘Hotellings’’, ‘‘Wilks’’, and ‘‘Roys.’’ Huberty (1994, pp. 183-189) offers a
detailed discussion of these four statistics, and the first three tests indicate the
multivariate effect is statistically significant for the current data (all ‘Sig. F’
values, that is, p’s < .001). Wilks’ Lambda is arguably the most popular multivar-
iate statistic, and Tabachnik and Fidell (2006) generally support reporting it in-
stead of the other values.

The analysis strategy recommended in this paper, however, employs Roy’s
g.c.r. A number of details regarding this statistic must therefore be clarified. First,
it is often reported in two different metrics. In the SPSS output shown above,
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which was generated with the MANOVA routine, it is reported as a measure of
association strength, θ = .25, that indicates the proportion of overlapping variance
between the independent variable and the first linear combination of dependent
variables. In other words, θ is equivalent to the well-known η2 measure of asso-
ciation strength. SPSS output generated from the GLM option in the pull-down
menus appears in a different format:

Multivariate Tests
c

Effect                                                Value            F           Hypotheses df    Error df      Sig.

Intercept Pillai’s Trace                      .995     7270.287a 5.000     196.000     .000

Wilk’s Lambda                   .005     7270.287a 5.000     196.000     .000

Hotelling’s Trace          185.466     7270.287a 5.000     196.000     .000

Roy’s Largest Root      185.466     7270.287a 5.000     196.000     .000

GRP       Pillai’s Trave                      .419         10.430              10.000     394.000     .000

Wilk’s Lambda                   .623         10.453a 10.000     392.000     .000

Hotelling’s Trace                .537         10.476              10.000     390.000     .000

Roy’s Largest Root            .339         13.354b 5.000     197.000     .000

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + GRP

As can be seen, except for ‘‘Roy’s Largest Root’’, the test values are equal to
those generated by the MANOVA routine. The value for Roy’s g.c.r. from GLM
is reported as an eigenvalue (λ = .34) which can be easily computed from the θ
value:

λλ =
1 + λ

, =
1 −

θ θ
θ

When using a program other than SPSS, the researcher should be certain to ex-
plore the software manuals to determine which metric is being reported. Alterna-
tively, as will be shown in the next step in the procedures, the value of θ can be
computed ‘‘manually’’ with compute statements.

The second issue regarding Roy’s g.c.r. is the F-value and hypothesis test
generated by the GLM procedure. This test is an upper bound that may unfor-
tunately lead to dramatically high Type I error rates (Harris, personal communica-
tion, October 26th, 2005). It should consequently be avoided, and the tabled
values for θ reported by Harris (1985, 2001) should instead be used. A program
reported by Harris (1985, p. 475) can also be used to compute the observed p-
value for Roy’s g.c.r. (in the θ metric) with s, m, and n degrees of freedom.2

These values are computed as:

s  = min(dfeffect, p)
m = (dfeffect - p - 1) / 2
n = (dferror - p - 1) / 2



APPLIED MULTIVARIATE RESEARCH

206

where,
p = number of dependent variables
dfeffect = k - 1
dferror = N - k
N = number of observations
k = number of groups

For the current data p = 5, k = 3, and N = 203. Consequently, dfeffect = 2, dferror =
200, s = min(2,5) = 2, m = (2 - 5 - 1) / 2 = 1, and n = (200 - 5 - 1) / 2 = 97 as
reported in the MANOVA output above. Harris’ program yields a critical θ value
(θcrit) of .07056 for a critical p-value (pcrit) of .05. The observed θ of .25313
exceeds θcrit and is therefore statistically significant. Entering various p-values
through trial-and-error in Harris’ program reveals the observed p-value to be less
than .0005.

Finally, now that Roy’s statistic has been explained, the other omnibus tests of
the multivariate effect can be succinctly described for pedagogical purposes as
follows:

Pillai’s Trace is the sum of the effect sizes for the discriminant functions;
that is, Σθi. A value approaching s indicates a large omnibus effect, and
when s = 1 Pillai’s Trace will equal Roy’s θ.
Hotelling’s Trace is similar to Pillai’s Trace, but is based on eigenvalues;
namely, Σλi. The magnitude of Hotelling’s Trace is difficult to interpret
since it has no set range, although when s = 1 the result will equal Roy’s λ.
Wilks’ Lambda (Λ) is based on overlapping variances, or effect sizes,
namely, Π(1−θi). Opposite of the other test statistics, values near 0 indicate
large omnibus effects.

These three tests differ from Roy’s test by combining, in some manner, the
information for all the discriminant functions produced from the analysis for a
given effect.

Step 2: Examining the Linear Combinations

As was stated at various points above the multivariate effect is conveyed
through the linear combinations of Big Five traits. These linear combinations are
defined by the discriminant function coefficients that can be requested from most
computer programs in both raw and standardized form. The coefficients from
SPSS MANOVA for the current example are reported as follows:
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EFFECT .. GRP (Cont.)
Raw discriminant function coefficients

Function No.

Variable                           1                         2

N                            -.00580               -.00700
E                            -.06027               -.00017
O                             .04239               -.04230
A                            -.02758               -.03102
C                              .00748               -.00956

Standardized discriminant function coefficients
Function No.

Variable                           1                         2

N                            -.12356               -.14893
E                           -1.11200               -.00309
O                             .72369               -.72218
A                            -.48180               -.54193
C                              .13811               -.17640

The discriminant function coefficients are regression weights that are multiplied
by the Big Five scale scores (N, E, O, A, C) in original or z-score units to create
the multivariate composites referred to throughout this manuscript. Consequently,
these regression weights are the heart and soul of MANOVA because they repre-
sent exactly how the dependent variables are combined to maximally discriminate
between the EA, AA, and AI groups. Depending on the number of groups and the
number of dependent variables, one or more linear combinations, or multivariate
composites, will be generated. The value of s degrees of freedom will in fact
indicate the number of multivariate composites produced. In the current example,
two composites are produced based on the three groups and five personality traits.
These two composites are furthermore uncorrelated (orthogonal) and ordered in
terms of their ‘‘strength’’; that is, the extent to which they overlap with the inde-
pendent variable.

Using the unstandardized coefficients above, the first multivariate composite
can be written and computed as follows:

Composite #1 = (N)(-.0058) + (E)(-.06027) + (O)(.04239) + (A)(-.02758) +
(C)(.00748).

This new variable can be entered as a single dependent variable in an
ANOVA, yielding the following results:

Source of Variation          SS            DF           MS            F          Sig of F

WITHIN CELLS        200.01        200          1.00
GRP                              67.79            2        33.89       33.89          .000
(Total)                         267.80        202          1.33
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A measure of association strength between the independent variable and multivar-
iate composite, η2, can then be computed:

(Fobserved)(dfbetween) (33.89)(2)η2 = = = .25
(Fobserved)(dfbetween) + dfwithin

(33.89)(2) + 200

The result, .25, is equal to Roy’s g.c.r. reported above as θ. Computing the
multivariate composite and conducting an ANOVA thus demonstrates that Roy’s
g.c.r. is a measure of effect size for the first linear composite. The second multi-
variate composite is orthogonal to (i.e., uncorrelated with) the first and can be
written and computed as follows:

Composite  #2 = (N)(-.007) + (E)(-.00017) + (O)(-.0423) + (A)(-.03102) +
(C)(-.00956). Conducting an ANOVA and computing η2 yields:

Source of Variation          SS            DF           MS            F          Sig of F

WITHIN CELLS        199.88        200          1.00
GRP                              39.64            2        19.82       19.83          .000
(Total)                         239.52        202          1.19

(Fobserved)(dfbetween) (19.83)(2)η2 = = = .17
(Fobserved)(dfbetween) + dfwithin

(19.83)(2) + 200

As mentioned above, the strength of association for this second composite is
lower than the first. Nonetheless, it too can be tested for statistical significance
using the same m and n degrees of freedom for testing the first composite, but s =
min(k - j, p - j + 1), where j is equal to the composite’s ordinal value. In this case
the second composite (j = 2) is being tested for statistical significance, and s =
min(3 - 2, 5 - 2 + 1) = 1, and θcrit = .04702 for pcrit = .05. The second composite is
therefore also statistically significant since .17 > .04702. It is also noteworthy that
the sum of the η2 values for the first (.25) and second (.17) composites equals .42,
which is the value for the Pillai’s Trace multivariate statistic above. Pillai’s Trace
thus differs from Roy’s g.c.r. by testing group differences on the complete set of
linear combinations generated from the analysis. Wilks’ Lambda and Hotelling’s
Trace similarly provide tests of the complete set of multivariate composites. The
omnibus nature of these three tests is a distinct disadvantage in the current ap-
proach, however, which focuses on testing and interpreting the individual discrim-
inant functions.

Step 3: Simplifying and Interpreting the First Linear Combination

The next step in the analysis involves interpreting the multivariate composites
defined by the discriminant functions. As was noted above, the first composite
will always yield the highest θ (i.e., η2) value, and in many genuine data sets the
remaining composites can be ignored because of their small effect sizes. The
second composite in the current example, however, shares 17% of its variance
with the independent variable, which is nearly as high as the percentage for the
first composite (25%). Nonetheless, solely for the sake of convenience, we will
simplify and interpret only the first composite for the personality data.
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It is often useful to determine the ‘‘multivariate gain’’ of the composite under
consideration over the univariate approach toward the same data. The gain is
determined by comparing the θ value for the composite to the corresponding
values from the univariate F-tests. For the current data the largest univariate η2

value was .15 for Extraversion, which is modestly lower than .25 for the first
multivariate composite. The multivariate gain over simple univariate analyses
was thus .10; in other words, the multivariate effect was 10 percentage points
higher than the strongest univariate effect in terms of shared variance.

As with any estimate of effect size the researcher must draw upon his or her
experience and theoretical framework as well as existing literature to judge the
importance of the multivariate gain. This judgement will also go hand-in-hand
with the conceptual interpretation or labeling of the multivariate composite. The
reader is most likely familiar with the process of interpreting and labeling multi-
variate composites in the realm of Exploratory Factor Analysis (EFA). In EFA
one begins with a pool of items and attempts to identify a set of common factors
believed to represent theoretically meaningful constructs (e.g., personality traits,
clinical syndromes, dimensions of intelligence, etc.) that underlie the original
items. Through a process of examining pattern, structure, or factor score coeffi-
cients the factors are ‘‘interpreted’’, which is to say they are labeled or named.
The factors themselves are mathematically determined as multivariate functions
of the original items in the analysis and are thus similar to the discriminant func-
tions in MANOVA. Consequently, the methods commonly employed to interpret
factors can be used to interpret multivariate composites. In factor analysis, for
example, an arbitrary criterion is often used (e.g., .30, .40) to judge pattern
or structure coefficients so that ‘‘salient’’ items may be identified for a given
factor. Once the salient items are identified, their content is examined for a
common theme which is then named and used as the factor label.

In MANOVA this process of labeling should begin with an examination of
simplified versions of the discriminant function coefficients. If the dependent
variables are on different scales the standardized function coefficients and stan-
dardized variables (z-scores) should be used when interpreting and computing the
simplified composite variable. If the dependent variables are all on the same
scale, as in the current data, the raw (i.e., unstandardized) coefficients and raw
scores should be preferred. The first composite is thus simplified by focusing only
on the relatively large raw discriminant function coefficients. The full function is
repeated here:

Composite #1 = (N)(-.0058) + (E)(-.06027) + (O)(.04239) + (A)(-.02758) +
(C)(.00748). Clearly, the coefficients for Neuroticism and Conscientiousness are
relatively small and near zero. Converting these small coefficients to zero yields:

Simplified Composite #1 = (N)(0) + (E)(-.06027) + (O)(.04239) +
(A)(-.02758) + (C)(0). As is done in interpreting factors differences between the
relatively large function coefficients are ignored. In other words, the coefficients
are changed to unity while their signs are retained:

Simplified Composite #1 = (E)(-1) + (O)(1) + (A)(-1) = O - (E + A). The
rationale behind this simplifying process is to round to zero those coefficients that
are relatively small because they are assumed to be deviating from zero well
within the bounds of sampling variability (Einhorn & Hogarth, 1975; Grice, 2001;
Wainer, 1976), although no statistical test of this assumption exists. Furthermore,
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the differences among the large coefficients are assumed to be within the bounds
of sampling variability, and thus important information is not lost by converting
these values to 1s and -1s consistent with their original signs (see Rozeboom,
1979, for further discussion of this topic). Again, this is the same process used
when interpreting factors in factor analysis, when creating sum scores from a
factor analysis or multiple regression analysis, and generating contrast coeffi-
cients in analysis of variance from an examination of means.

In words then, the multivariate composite that discriminates between the
European American, Asian American, and Asian International students is higher
Openness-to-Experience relative to lower Extraversion and Agreeableness. A
sensible label to apply to this novel multivariate composite is ‘‘Reserved-Open-
ness.’’ Individuals who score high on this composite are quietly or reservedly
open to new experiences, whereas individuals who score low on this composite
can be described as gregariously traditional (i.e., extraverted, agreeable, and low
on openness). The composite can thus be interpreted as Reserved-Openness vs.
Gregarious-Traditionalism.

The nature of this multivariate composite can further be understood by exam-
ining the means in Figure 1. As can be seen in the highlighted (i.e., the ‘‘boxed’’)
portions of the graph European Americans rate themselves higher on Extraversion
and Agreeableness relative to Openness-to-Experience, whereas Asian Americans
and Asian Internationals rate themselves higher on Openness-to-Experience rela-
tive to Extraversion and Agreeableness. It is thus the pattern of means, or more
specifically the differences in patterns of means, that is captured by the simpli-
fied, multivariate composite. When reporting the results of the analyses for this
particular study, the multivariate effect could possibly be discussed with respect
to cultural differences between Asian and Caucasian Americans in terms of their
personality types. Types, in the realm of personality psychology, are considered
to be multivariate clusters of traits or other stable personal characteristics.

The simplification and interpretation process is perhaps the most important
stage of the MANOVA since it provides the bridge from a purely statistical effect
to a theoretically meaningful effect. If at this point in the analysis the multivariate
composite (i.e., the discriminant function) can not be labeled or theoretically
interpreted, a switch to separate univariate analyses would be prudent. Otherwise,
the researcher will be faced with a situation in which the multivariate effect is
potentially large and statistically significant, but conceptually meaningless.
Because of the importance of interpretation in the current approach toward
MANOVA, a number of pointers for interpreting the multivariate function will be
presented below.

Step 4: Testing the Simplified Multivariate Composite for Statistical Significance.

Do the EA, AA, and AI groups differ significantly in their means on the sim-
plified composite, Reserved-Openness? Recall the three groups differed signifi-
cantly on the full composite, as indicated by the Roy’s g.c.r. test (θ = .25, p
< .0005). The mathematics underlying MANOVA will insure the θ values are
maximized for each of the linear combinations of dependent variables, subject to
the condition that each is uncorrelated with preceding discriminant functions. The
multivariate composite produced from the simplification process is essentially a
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crude approximation of the first exact discriminant function, and it will always
yield a lower θ value that must be tested for statistical significance. The formula
can be found in Harris (2001, p. 222):

dferrorθcritFcrit =
(1 - θcrit) dfeffect

Using Harris’ g.c.r. program, θcrit = .0706 for s = 2, m = 1, n = 97, and pcrit
= .05.

dferrorθcritFcrit =
(1 - θcrit) dfeffect

= (200)(.0706)
(1-.0706)(2)

= 7.60

The simplified composite, Reserved-Openness, can be computed in SPSS and
entered as the dependent variable in an ANOVA:

Source of Variation          SS            DF           MS            F          Sig of F

WITHIN CELLS   104562.38        200      522.81
GRP                        28955.74            2  14477.87       27.69          .000
(Total)                   133518.12        202      660.98

R-Squared = .217          Adjusted R-Squared =  .209

The observed F-statistic (F
obs

= 27.69) exceeds Fcrit = 7.60 and is therefore statis-
tically significant. The results consequently indicate the three EA, AA, and AI
groups differ in terms of their population means on the multivariate composite
Reserved-Openness. Moreover, the η2 value is .22, which compares favorably
to .25 for the full composite. The multivariate gain of the simplified composite
(.15 compared to .22) is still substantial and similar to the multivariate gain of the
full composite (.15 compared to .25). In other words, very little overlapping
variance with the independent variable was lost in the simplification process.

The direction of this effect can be understood by first computing the range of
values that are possible on the simplified composite. The original scores on the
Big Five scales could range in value from 0 to 192. The lowest possible score for
Reserved-Openness is therefore -384 [viz., 0 - (192 + 192)], and the highest
possible score is equal to 192 [viz., 192 - (0 + 0)]. The European Americans (M =
-129.67, SD = 21.85) scored approximately 24 scale points lower, on average,
than the Asian American (M = -107.68, SD = 26.03) and Asian International (M =
-103.25, SD = 21.21) students on the Reserved-Openness composite. On a 576-
point scale, this average difference seems to reflect a modest, or small, effect size.
On the other hand, the observed scores on the Reserved-Openness composite
ranged from -179 to -28 for all 203 participants. Compared to this observed range,
the approximate 24-point mean difference might be interpreted as more theoreti-
cally or practically significant.

Step 5: Conducting Follow-up Tests on the Simplified Multivariate Composite.

As in univariate ANOVA, an omnibus multivariate effect for three or more
groups should be followed by pairwise comparisons or tests of complex contrasts.
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Moreover, in univariate ANOVA the choice of an adjustment procedure (e.g.,
Tukey’s HSD, or Scheffe’) for controlling the Type I error rate will depend on
two factors: (1) the type of contrasts, pairwise or complex; and (2) whether the
contrasts are planned or constructed after examining the results. The same factors
must be considered in MANOVA when contrasting the groups on the simplified
multivariate composite. Additionally, one must consider whether the simplified
multivariate composite was planned or constructed after examining the discrimi-
nant function coefficients.

In the current example of Iwasaki’s personality data, the multivariate com-
posite Reserved-Openness was constructed in a purely post hoc fashion. Let us
further investigate, post hoc, a complex contrast and pairwise comparisons
between the EA, AA, and AI groups. The complex contrast entails a comparison
of the average AA and AI means with the EA multivariate composite mean [viz.,
(1)(AA) + (1)(AI) - (2)(EA)].3 Given the fully post hoc nature of the multivariate
composite and the follow-up tests, Harris (2001) recommends a Scheffe’-style
adjustment equal to the product of the g.c.r.-based Fcrit value above and dfeffect:
(7.60)(2) = 15.20. This adjustment is admittedly conservative, but it is the price
that must be paid when a priori theory is not available for constructing the multi-
variate composite or the group contrasts. More will be said about adjustments for
Type I error rates below.

For the current data the results for the complex comparison and all possible
pairwise comparisons on the simplified composite (‘‘Comp 1’’) generated from
SPSS GLM appear as follows:

Contrast Coefficients

Group

European           Asian                Asian
Contrast     Americans     Internationals     Americans

1                        -1                      .5                   .5

2                        -1                        1                    0

3                        -1                        0                    1

4                         0                      -1                    1

Contrast Tests

Value of
Contrast       Contrast     Std. Error           t           df          Sig. (2-tailed)

Reserved-Openness    Assume equal       1      24.2024      3.3347       7.258            200               .000
variances               2         26.4167      3.7725       7.002            200               .000

3        21.9881      4.0382       5.445            200               .000

4        -4.4286      4.0740      -1.087            200               .278

Does not assume  1       24.2024      3.3100       7.312     160.290               .000
equal variances     2        26.4167      3.5520       7.437     144.982               .000

3      21.9881      4.2978       5.116     106.810               .000

4       -4.4286      4.2838      -1.034     104.810               .304
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The tests for the contrasts are reported as t-values and must therefore be com-
pared to the square root of 15.20, which equals 3.90 (t2 = F for single degree of
freedom contrasts). The results clearly show the European Americans are distinct
from the Asian Americans and Asian Internationals on the multivariate com-
posite. Specifically, the European Americans scored lower, on average, than the
Asian International and Asian American students on the Reserved-Openness
composite. The population means for the Asian groups were concluded to be
equal.

Given the American Psychological Association’s recent efforts (Wilkinson, et
al., 1999) to encourage researchers to compute and report estimates of effect size
as well as confidence intervals, these statistics should be derived and interpreted
for the follow-up contrasts as well. As demonstrated above θ is a measure of
association strength that can be reported as an indicator of the magnitude of ef-
fect. Similarly, η2 values can easily be computed for the t-values obtained from
the contrasts using the well-known formulae:

t2
contrast Fcontrastη2

contrast = = 
t2
contrast + dferror Fcontrast + dferror

The η2 result for the complex comparison, for instance, is .21 and indicates a
large effect using Cohen’s conventions.

Computing confidence intervals for contrasts of means on the simplified
multivariate composite is more difficult and may require a modicum of matrix
algebra (see Harris, 2001, p. 221). The confidence interval must take into account
the contrast coefficients, the weights used to create the multivariate composite,
and the matrix of residuals from the MANOVA. Specifically, the formula for a
multivariate contrast is as follows:

c2
j

cXa' ±  Σ (aEa')λcritn
j

where c is a row vector of k contrast coefficients, a is a row vector of p weights
used to define the multivariate composite, × is a k × p matrix of group means on
the dependent variables, E is a p × p matrix of residuals (i.e., the error matrix
from MANOVA), and λcrit is transformed from the θcrit value used for the omni-
bus test. The c

j
’s and nj’s are the contrast coefficients and sample sizes for the

groups, respectively.
Fortunately, as pointed out by a reviewer of this manuscript, the equation

above can be simplified so that computing confidence intervals is a manageable
task:

Value of Contrast ± std. error (dferror) λcrit ,

where ‘Value of Contrast’, ‘std. error’, and dferror are taken from the SPSS
‘Contrast Tests’ table above (24.2024, 3.3347, and 200, respectively) for the first
contrast. Using θcrit (.0706) from above,
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θcritλcrit =
1 - θcrit

= (.0706)
(1-.0706)

= .0760

Thus,

24.2042 ± 3.3347 (200)(.0760) ,

and the 95% confidence interval for contrasting the EAs with the Aas and Ais on
the Reserved-Openness multivariate composite can be written as:

11.20 < µ
Comp(AA,AI)

- µ
Comp(EA)

< 37.20.

The center of the confidence interval is located at 24.20, the mean difference
between the EA and averaged AA and AI groups on the Reserved-Openness
composite which can range in value from -384 to 192 (576 units). The width of
this confidence interval is only 26 units, or 4.5% (26 / 576) of the scale range, and
is therefore a highly precise confidence interval.

Step 6: Summarizing Results using APA style.

When reporting the results of a MANOVA in APA style it is important to
provide the overall tests of statistical significance, the full discriminant function
coefficients, and the simplified multivariate composite. The theoretical or concep-
tual interpretation of the composite must also be presented along with the statisti-
cal tests of the composite and follow-up comparisons. For the overall tests of
significance, Roy’s g.c.r. must be reported when following the approach outlined
in this paper. Wilks’ Lambda or other tests can also be reported, although they are
superfluous in this context. A complete example write-up of the analysis of
Iwasaki’s data above can be found in the Appendix. The reader will find the
example includes brief assessments of several of the assumptions underlying
MANOVA. Such assessments are also important, although they were not de-
scribed above.

Three assumptions underlie significance testing in MANOVA: (1) indepen-
dence of observations, (2) multivariate normality of the group population depend-
ent variables, and (3) homogeneity of group population variance-covariance
matrices. Each of these assumptions should be assessed as part of the analysis.
Stevens (2002, Chapter 6) offers an excellent discussion of these assumptions as
does Tabachnick and Fidell (2006, Section 9.3). The participants’ observations in
Iwasaki’s study were determined to be independent across and within groups
(e.g., the participants completed the questionnaires separately and were not relat-
ed). Although multivariate normality cannot be assessed in SPSS, univariate
normality was evaluated for each of the Big Five variables within each of the
three groups. All but two of the Kolmorogov-Smirnov tests were not statistically
significant (p’s > .05), indicating that most of the variables were normally distrib-
uted. Although these results for univariate normality do not guarantee multivar-
iate normality, they at least make the latter assumption more reasonable. Moreo-
ver, the simplified multivariate composite was itself tested and found to follow a
normal distribution within the bounds of typical sampling variability, thus but-
tressing the statistical conclusions made for the composite. Lastly, Box’s M test
for equality of covariance matrices was not statistically significant at the .05
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level, indicating that the group population covariance matrices could be assumed
equal. Stevens discusses potential adjustments for violations of each of the three
assumptions, and Harris (2001, pp. 237-238) discusses the relevance of these
assumptions for the g.c.r. test, specifically. It is worth noting briefly that Harris
addresses the common criticism against the g.c.r. test regarding its sensitivity to
violations of multivariate normality and/or homogeneity of covariance matrices.
He points out that creating, interpreting, and testing simplified composites offsets
the problems of the g.c.r. test.

ADDITIONAL ISSUES

Subsequent Discriminant Functions

Although the second function was tested for statistical significance, only the
first discriminant function was examined in detail above. Certainly, the second
function could have been examined using all of the procedures that were applied
to the first function. The functions are independent and could yield distinct and
interesting multivariate information regarding group differences, keeping in mind
that the functions will be rank-ordered with respect to their proportion of overlap
with the independent variable. In other words, the first function will always
possess the highest θ (or η2) value, followed by the second, and so on. A quick
comparison of Roy’s g.c.r. value, reported as θ, and Pillai’s trace from the omni-
bus MANOVA will give an indication of the strength of the first discriminant
function compared to the remaining functions. The researcher must then decide if
pursuing the subsequent functions is worthwhile both conceptually and statistical-
ly. Are the subsequent functions interpretable? Are they statistically significant?
Recall from above that subsequent functions can be tested using the same m and n
degrees of freedom for the first composite, but s = min(k - j, p - j + 1), where j is
equal to the composite’s ordinal value. Can the other functions be simplified
easily? Such questions must be answered by the researcher in the context of his or
her study when deciding to pursue the subsequent functions.

Strategies for interpreting the multivariate composites and results

Perhaps the most challenging aspect of the current approach is interpreting the
discriminant functions; that is, making conceptual or theoretical sense of the
multivariate composites generated by the analysis. Following the advice of Harris
(2001) the interpretation process must begin with the discriminant function coef-
ficients, and with a measure of good fortune the process will end with these coef-
ficients. If an investigator is looking for additional information to help solidify or
shore up a composite label the structure coefficients, which are the correlations
between the multivariate composites and original measures, may also be comput-
ed and examined. The structure coefficients can be requested using the DISCRIM
option in SPSS, which is accessible from the pull-down menus in Windows. A
simpler and arguably more appropriate strategy, however, is to compute the corre-
lations between the simplified composite (which represents the interpreted multi-
variate effect) and the dependent variables. For Iwasaki’s data, for instance, the
simplified composite was computed as a new variable in SPSS and then simply
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correlated with the original Big Five scale scores. In this example the signs and
relative magnitudes of these correlations (i.e., structure coefficients) were similar
to the discriminant function coefficients for Neuroticism (r = -.15), Extraversion
(r = -.64), Openness-to-Experience (r = .50), and Agreeableness (r = -.67). The
correlation between Reserved-Openness and Conscientiousness (r = -.50) was
negative and relatively large in absolute magnitude even though the discriminant
function coefficient for Conscientiousness was near zero (b < .01). Individuals
who scored relatively high on the multivariate composite scored, on average,
relatively low on the Conscientiousness scale. In other words, the Gregarious-
Traditional individuals tended to report relatively higher levels of Conscientious-
ness than Reserved-Open individuals. This correlation is certainly consistent with
the traditionalism aspect of the multivariate construct and thus supports the inter-
pretation of the discriminant function. Such interpretive congruence between the
discriminant function coefficients and the structure coefficients will not always
occur, and there is a body of literature discussing this intriguing fact of multivar-
iate statistics. While some authors argue vehemently in support of using primarily
structure coefficients to interpret multivariate composites, our strategy relies
almost exclusively on the discriminant function coefficients as the basis for the
interpretation process (see Harris, 2001). If the structure coefficients are exam-
ined at all, they are used only in a secondary role in an attempt to clarify or
enhance the theoretical understanding of the multivariate composite.

Another aid to the interpretation process is the reflective nature of the signs of
the raw and standardized discriminant function coefficients. In other words, the
signs of the coefficients are arbitrary and can be reflected without loss of mean-
ing. For example, the above Reserved-Openness composite could have originally
been computed as (E)(1) + (O)(-1) + (A)(1) rather than (E)(-1) + (O)(1) + (A)(-1).
The three groups would therefore differ in terms of higher Extraversion and
Agreeableness relative to lower Openness-to-Experience (Gregarious-Traditional-
ism). It is important to note that the signs for all of the variables in the composite
must be reversed if this strategy is employed. In our experience, simply reversing
the signs can at times provide the necessary insight for deriving an interpretation
when it is not readily evident with the original discriminant function coefficients.
Consider the second multivariate composite for the current data, which could be
simplified to (1)(O) + (1)(A). What personality type might we apply to a person
who is high in openness-to-experience and agreeableness? Reversing the signs of
the coefficients [(-1)(O) + (-1)(A)] changes the task to inquiring what type of
person is closed to new experiences and disagreeable? It seems the label ‘‘Rigid’’
applies to this composite, and the opposite label ‘‘Flexible’’ would thus apply to
the opposite pole. The new composite can therefore be scored as either an index
of Rigidity (-O + -A) or Flexibility (O + A) without loss of meaning.

When working with the unstandardized discriminant function coefficients and
original dependent variables, manipulating the scaling of the simplified multivar-
iate composite can also greatly aid the interpretation process. MANOVA maxi-
mizes the differences between group means on linear combinations of the de-
pendent variables. Consequently, it can be very useful to center the original
variables before computing the multivariate composite. The centered scaling will
generate the same η2 values for the multivariate composite and the same results
for post hoc comparisons of groups. Each dependent variable is centered by
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subtracting its mean from the individual scores. For instance, the mean for Extra-
version for all 203 participants in the example above is equal to 116.73. A comp-
ute statement in SPSS can be written to center the Extraversion (E) scale scores:

COMPUTE E_center = E - 116.73.

Reserved-Openness would then be computed from the centered variables,
O_center - (E_center + A_center). The primary benefit of centering the variables
is interpreting group differences on the multivariate composite. The means for the
EA (M = -15.44), AA (M = 6.55), and AI (M = 10.98) groups more clearly in-
dicate that the AIs and AAs score relatively high on Reserved-Openness whereas
the EAs score relatively low.

When the dependent variables are measured on different scales, the standard-
ized discriminant function coefficients are often easier to simplify and interpret.
As standardized coefficients they are derived from a MANOVA conducted on the
z-scores of the dependent variables, thus removing differences in their scaling and
variance. The multivariate composite should consequently be computed from the
z-scores rather than the original variables; for example, (1)(Oz) + (-1)(Ez) +
(-1)(Az), keeping in mind the η2 value for the standardized composite will likely
differ from the η2 value for the original composite. Similar to centered scores,
however, working with the standardized scores may also facilitate thinking about
the groups in terms of their relative, rather than their absolute, performances on
the dependent variables and on the multivariate composite. For instance, the
means for the EA (M = -.73), AA (M = .31), and AI (M = .50) groups on the
standardized composite again clearly indicate that the AIs and AAs score relative-
ly high on Reserved-Openness whereas the EAs score relatively low. The concep-
tual or theoretical nature of the multivariate composite may therefore be easier to
understand when switching from a scale-based to a standardized perspective.

Lastly, a topic related to the scaling of the simplified weights used in the
multivariate composite is that of complex weighting schemes. In most instances
the discriminant function coefficients can be simplified to -1s, 0s, and 1s because
it is easier to think of whole and equivalent units of Extraversion, Agreeableness,
etc. than of fractional or unequal units of these variables. Some analyses, howev-
er, may call for more complex weighting schemes in which one or more of the
variables is given greater weight in the simplified composite. For instance, given
the relatively large discriminant function coefficient for Extraversion in the first
function above, the simplified composite could have been computed as (-2)(E) +
(1)(O) + (-1)(A). It may be that the label Reserved-Openness is better captured by
greater weight given to extraversion relative to agreeableness. Such judgments
would of course be driven primarily by logic and theory, although the η2 values
for the composites derived from different weighting schemes could be computed
and compared. Furthermore, if a fully post hoc critical value is employed, as
above, an infinite number of such composites can be computed and compared. A
conceptually meaningful multivariate composite derived from a complex weight-
ing scheme that also yields a high η2 value may finally be preferred over a
competing composite derived from equal weights. Given the long history of
evidence showing that complex weighting schemes are generally no more effec-
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tive, practically speaking, than complex weighting schemes, it is nonetheless
reasonable to expect simple and equal weighting schemes to perform adequately.

More complex designs

The essence of conducting a truly multivariate analysis of variance entails an
examination of the multivariate composite or composites of the dependent varia-
bles that are generated from the analysis. Depending on the number of groups and
the number of dependent variables, the number of composites generated will vary.
Furthermore, with factorial designs (i.e., designs with two or more independent
variables) distinct sets of multivariate composites will be generated for each
interaction and main effect. The task of the researcher then becomes interpreting,
simplifying, and analyzing the composite or composites for each effect in the
analysis. Suppose differences between men and women were examined in the
example above. The inclusion of this additional independent variable would yield
a 2 x 3 (gender by group) factorial MANOVA with five dependent variables. The
s degree of freedom parameter is computed as min(dfeffect, # dependent varia-
bles) and indicates the number of independent discriminant functions computed
for each effect. The gender main effect would yield one discriminant function, the
group main effect would yield two functions, and the interaction would yield two
functions. All of these discriminant functions would be distinct, and would possi-
bly yield different simplified multivariate composites with different interpreta-
tions. Obviously, the burden can become great, and the researcher must then
return to the critical point made above: Is a truly multivariate question being
asked? In other words, does the researcher have reason to expect significant
multivariate gain (both statistically and conceptually) from the MANOVA
compared to conducting a series of univariate factorial ANOVAs? If the answer is
‘‘yes’’, then the considerable work involved with simplifying and interpreting the
discriminant functions produced by the factorial MANOVA must be undertaken
with patience. Alternatively, Harris (2001) suggests the factorial MANOVA can
initially be ignored to create a single simplified composite for all effects. For
instance, the suggested 2 x 3 MANOVA for Iwasaki’s data could be ‘‘reduced’’
to a oneway MANOVA with 6 groups (EA males, EA females, AI males, AI
females, AA males, AA females), which would produce 5 discriminant functions
that could be simplified and interpreted. Of course the first function would yield
the highest θ value and may be the only multivariate composite worth pursuing.
Regardless, the simplified composite (or composites) can than be examined using
the procedures above in which univariate ANOVA procedures, with the appro-
priate critical values, are employed to test the two main effects and the interaction
for the simplified composite(s). This approach saves a substantial amount of
effort compared to simplifying and labeling different composites for each effect
in the factorial MANOVA.

Post hoc vs. a priori tests

The example above was fully post hoc, meaning that interpreting and con-
structing the simplified, multivariate composite was done after an examination of
the results from the MANOVA and the EA, AI, and AA group contrasts were
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conducted after an examination of the means on the simplified composite. When
considering the issue of post hoc versus a priori analyses in the current approach,
then, two factors must be considered: (1) the construction of the multivariate
composite, and (2) the construction of group contrasts. Harris (2001, p. 222)
crosses these two factors to produce a table reporting the critical values for differ-
ent scenarios:

Dependent Variable Composite a priori?

Yes No

Yes

No

Independent
Variable
Contrast
a priori?

Fα(1, dferror)

Bonferroni adjustment can
be applied to α for
multiple comparisons

df
effect

• Fα(dfeffect, dferror)

Bonferroni adjustment can be applied to α 
for multiple comparisons

df
effect

• F
crit

p • dferror

dferror - p+1
Fα(p, dferror - p+1)

The value for Fcrit is computed as:

dferrorθcritFcrit =
(1 - θcrit) dfeffect

The values for dfeffect, dferror, etc. are defined above under Step 1. Fα refers to the
critical value from the F-distribution with the indicated degrees of freedom and an
a priori p-value equal to α. As can be seen in the table, the multivariate composite
can be generated prior to or after the omnibus MANOVA. It is conceivable to
generate a multivariate composite on a priori grounds, particularly when replicat-
ing previous results. In the example above, it is also conceivable the Reserved-
Openness composite could have been theoretically anticipated based an under-
standing of differences between American and Asian cultures. If the composite
were created prior to the analysis and the group contrasts were also planned, then
the critical value in the upper lefthand corner of the table [viz., Fα (1, df

error
)]

would have been used to test the statistical significance of the various results. As
with univariate ANOVA the choice of critical values is to maximize power, and
the most powerful tests will usually be those in which the composites and group
contrasts are constructed on an a priori basis.

When the multivariate composite is constructed prior to the analyses, we
would further recommend a number of omnibus post hoc tests in which the
dependent variables are removed, individually, from the multivariate composite
and the resulting η2 values recorded. In this way the importance of each variable
to the a priori composite can be assessed. A large drop in η2, for instance, would
indicate that the variable is an important component of the multivariate com-
posite. Unfortunately, a test of statistical significance for the individual variables
in the composite is not available in the context of the methods employed herein.
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Multicollinearity and Singularity among Predictors

Some textbook authors (e.g., Stevens, 2002, and Tabachnick & Fidell, 2006)
argue that high correlations among the dependent variables are problematic.
When two or more of the dependent variables are completely redundant (either
considered pairwise or in linear combination), they are said to be singular, and
this problem should be resolved by removing the problematic dependent varia-
bles. When the variables are highlybut not perfectly related they are said to
suffer from multicollinearity. This condition is problematic because it tends to
result in high variability in the discriminant function coefficients, much like
multicollinearity ‘‘increases the variances of the regression coefficients’’ (Ste-
vens, 2002, p. 92) in multiple regression. But how much multicollinearity among
the dependent variables should be tolerated? Common rules of thumb are 80% or
90% overlap, while some might consider even moderate overlap (25% - 50%) to
be too high. It is our opinion that other than singularity or near singularity (>90%
overlap), the multicollinearity issue should not weigh heavily in the decision
process behind the analysis. The beauty of multivariate statistical models is that
they incorporate the interrelations among variables, and to argue that the depend-
ent variables in a MANOVA, for example, must be nearly orthogonal is to argue
that one should always opt for conducting independent univariate analyses. In
other words, when the variables are independent (i.e., uncorrelated) the results
from multivariate analyses are completely predictable from univariate or bivariate
analyses of those same variables. Consider a case in which the outcome variable
in a multiple regression is standardized, and the predictor variables are also stan-
dardized and uncorrelated with one another. In this instance the regression
weights will equal the bivariate correlations between each predictor and the
outcome variable. Insisting that multicollinearity be low is thus tantamount to
insisting that one’s multivariate results match a series of univariate analyses
performed on the same dependent variables. Such reasoning leaves us to wonder
why we should bother with multivariate statistics at all.

Stepdown Analysis

A much recommended method for following up a significant omnibus
MANOVA is to conduct what is referred to as a stepdown analysis. This proce-
dure is equivalent to a series of analyses of covariance (ANCOVAs) in which the
dependent variables are evaluated in terms of their unique overlap with the inde-
pendent variable. Stevens (2002) and Tabachnick & Fidell (2006) both offer
discussions of this type of analysis. An important feature of stepdown analysis is
that the order of variables in the ANCOVAs is of utmost importance and must be
driven by a clear rationale. The methods above, by comparison, permit the re-
searcher to examine the importance of the dependent variables simultaneously
and is a relatively straightforward alternative to stepdown analysis. The similari-
ties between the above procedures and Discriminant Function Analysis and
multivariate profile analysis are also readily apparent and reveal the intimate
connections between these methods. Lastly, conducting a stepdown analysis
requires the additional rigid assumptions (e.g., homogeneity of regression slopes)
associated with ANCOVA. For these reasons, we prefer the methods above to
stepdown analysis.
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NOTES

1.  The data set, which includes the independent and dependent variables, can be
downloaded from the first author’s website: http://psychology.okstate.edu/faculty
/jgrice/personalitylab/
2.  The program ‘‘gcrcomp’’ can be downloaded from the first authors’ website:
http://psychology.okstate.edu/faculty/jgrice/personalitylab/
3.  An argument could certainly be made that contrasting the EA with the com-
bined AA and AI groups is obvious enough to be considered as a priori rather
than post hoc. The approach taken herein and the analyses reported above,
however, are distinct from the analysis strategy reported in Iwasaki’s (1998)
thesis. We therefore chose a conservative route for the multivariate analyses.
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Figure 1.  Means for European American, Asian International, and
Asian American students on Big Five personality traits as measured

by the NEO PI-r.

APPENDIX

Annotated Syntax Statements for SPSS

Title ‘Grice & Iwasaki MANOVA results’.

Subtitle ‘Step 1 Analyses’.

* Both univariate and multivariate results will be printed from the MANOVA

* command below.

MANOVA n e o a c by grp(0,2)

/print cellinfo(means) homogeneity

/discrim(raw stan) alpha(1.0)    /* ’alpha(1.0)’ insures all discriminant

functions will be printed */

/design.
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* The following GLM procedure will yeild the same results but will not print

* the discriminant function coefficients. It reports Roy’s g.c.r. as an

* eigenvalue (lambda) rather than a proportion of overlap (theta).

GLM

n e o a c  BY grp

/METHOD = SSTYPE(3)

/INTERCEPT = INCLUDE

/PRINT = DESCRIPTIVE ETASQ HOMOGENEITY

/CRITERIA = ALPHA(.05)

/DESIGN = grp .

Subtitle ’Step 2 Analyses’.

* Compute the 1st full multivariate composite.

COMPUTE Comp1=(N * -0.0058) + (E * -0.06027) + (O * 0.04239) + (A * -0.02758)

+ (C * 0.00748).

MANOVA Comp1 BY grp(0,2)

/design.      /* using MANOVA to conduct univariate ANOVA on ‘Comp1’. */

COMPUTE Comp2=(N * -.007) + (E * -.00017) + (O * -.0423) + (A * -.03102)

+ (C * -.00956).

MANOVA Comp2 BY grp(0,2)

/design.      /* Using MANOVA to conduct univariate ANOVA on ‘Comp2’. */

Subtitle ‘Step 3 Analyses’.

COMPUTE Simp1=(E * -1) + (O * 1) + (A * -1).

VARIABLE LABEL Simp1 ’Reserved-Openness’.

Subtitle ‘Step 4 Analyses’.

* Test Simp1, the simplified multivariate composite (Reserved-Openness) for

* statistical significance.

* F-critical (p = .05) for the test is 7.60.

MANOVA Simp1 BY grp(0,2)

/print cellinfo(means)

/design.

Subtitle ‘Step 5 Analyses’.

* Follow-up Tests comparing three groups on simplified multivariate composite

* (Reserved-Openness).

ONEWAY Simp1 BY grp

/contrast = -1 .5 .5

/contrast = -1  1  0

/contrast = -1  0  1

/contrast =  0 -1  1

/statistics descriptives

/plot means

/missing analysis.

Subtitle ‘Additional Analyses’.

* Computing structure coefficients; i.e., correlations between multivariate

* composite and DVs.

CORR Simp1 with N E O A C.
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APA STYLE EXAMPLE

A one-factor, between-subjects multivariate analysis of variance (MANOVA) was
conducted. The Big Five personality trait scores from the NEO PI-r served as the
dependent variables in the analysis, and the ethnic groups (European Americans,
Asian Americans, Asian Internationals) comprised the independent variable. Evalua-
tion of the homogeneity of variance-covariance matrices and normality assumptions
underlying MANOVA did not reveal any substantial anomalies, and the a priori level
of significance was set at .05. The bivariate correlations for the dependent variables
across all 203 participants are presented in Table 1.

Results from the MANOVA were statistically significant according to Wilks’ Λ
(.62), F(10, 392) = 10.45, p < .001. Furthermore, Roy’s greatest characteristic root
(g.c.r.) was statistically significant (s = 2, m = 1, n = 97, p < .001) and indicated that
the independent variable and first multivariate combination of dependent variables
shared 25 percent of their variance. Univariate means and standard deviations and the
unstandardized discriminant function coefficients for the first multivariate combina-
tion are reported in Table 2. As can be seen, the coefficients (ws) indicate the EA, AA,
and AI groups differed as a function of relatively high Openness-to-Experience (ws
= .04) compared to lower reported levels of Extraversion (ws = -.06) and Agreeable-
ness (ws = -.03). The coefficients for Neuroticism (ws = -.01) and Conscientiousness
(ws = .01) were relatively small in absolute value. Following the MANOVA analysis
strategy recommended by Harris (2001), a simplified multivariate composite was
created from the centered dependent variables with extreme discriminant function
coefficients. For the current data the simplified composite was equal to: (-1)(Extra-
version) + (-1)(Agreeableness) + (1)(Openness-to-Experience), or Openness - (Extra-
version + Agreeableness). Conceptually, this combination of traits represents someth-
ing akin to a personality type that we labeled ‘‘Reserved-Openness’’. We labeled the
opposite of this type ‘‘Gregarious-Traditionalism’’.

As can be seen in Figure 1, the three groups differed in the patterns of the Extra-
version, Openness-to-Experience, and Agreeableness traits. Specifically, the Euro-
pean Americans reported higher levels of Extraversion and Agreeableness compared
to Openness-to-Experience; in other words, they exhibited Gregarious-Traditionalism.
The opposite pattern of means was observed for the Asian American and Asian Inter-
national students who exhibited Reserved-Openness. Indeed, the three groups differed
on the simplified multivariate composite (based on the centered variables) represent-
ing Reserved-Openness, F(2, 200) = 27.69, p < .001, η2 = .22, according to a fully
post hoc criterion for statistical significance (Harris, 2001). Furthermore, using a
Scheffe’-adjusted critical value to control for Type I error inflation, we conducted
several follow-up contrasts. The European Americans (n = 75, M = -15.44, SD =
21.86) were found, on average, to score lower on Reserved-Openness than the Asian
International (n = 72, M = 10.98, SD = 26.03) and Asian American (n = 56, M = 6.55,
SD = 21.21) students combined (Mean difference for contrast, Mcontrast, = 24.20, p
< .05, η2 = .21, CI.95: 11.19, 37.21). Moreover, the EAs were found to score lower
than the AIs (Mcontrast = 26.42, p < .05, η2 = .20, CI.95: 11.71, 41.12) and AAs (Mcontrast
= 21.99, p < .05, η2 = .13, CI.95: 6.25, 37.73), considered separately. The mean dif-
ference between the AIs and AAs was not statistically significant (Mcontrast = -4.43, p
> .05, η2 = .01, CI.95: -20.31, 11.45). While the estimated effect sizes were small, the
95% confidence intervals were precise when compared to the possible range of values
on the simplified multivariate composite.
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Table 1. Intercorrelations among Big Five Personality Traits

Trait                   N                E                O                A                C

Neuroticism             1.00            -.26*          -.02            -.10            -.40*
Extraversion               1.00              .35*            .01              .37*
Openness                   1.00              .23*            .13
Agreeableness            1.00              .10
Conscientiousness      1.00

*p < .001

Table 2. Means, Standard Deviations, and Discriminant Function Coef-
ficients for EA, AA, and AI Groups on the Big Fiver Personality Traits

Personality Trait        Group M SD ws

Neuroticism                 All                   95.91                  23.17               -.0058
EA                   93.95                  22.83
AA                  97.04                  22.07
AI                    97.07                  18.88

Extraversion                All                 116.53                  22.09               -.0603
EA                 126.23                  18.46
AA                114.98                  20.45
AI                  108.19                  16.73

Openness                     All                 116.22                  20.60                .0424
EA                 113.40                  17.12
AA                126.98                  19.11
AI                  111.36                  15.24

Agreeableness             All                 113.75                  20.61               -.0276
EA                 116.84                  18.69
AA                119.68                  19.78
AI                  106.42                  13.88

Conscientiousness       All                 111.62                  20.81                .0075
EA                 113.87                  15.53
AA                113.34                  22.56
AI                  108.38                  17.72

Note. EA = European American (N = 75); AA = Asian American (N = 56); AI =
Asian International (N = 72). ws = coefficients from first unstandardized discrimi-
nant function.


