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When interpreting an interaction in the analysis of variance
(ANOVA), many active researchers (and, in turn, students) of-
ten ignore the residuals defining the interaction. Although this
problem has been noted previously, it appears that many users
of ANOVA remain uncertain about the proper understanding of
interaction effects. To clear up this problem, we review the way
in which the ANOVA model enables us to take apart a table of
group means or the individual measurements contributing to
the means to reveal the underlying components. We also show
how (using only published data) to compute a contrast on the
question that may be of primary interest and illustrate strate-
gies for interpreting tables of residuals. We conclude with an
exercise to check on students' understanding of ANOVA and to
encourage increased precision in the specification of research
results.

Not long ago, 551 active psychological researchers
were surveyed by Zuckerman, Hodgins, Zuckerman, and
Rosenthal (1993). The researchers were asked to respond
to a set of data-analytic problems, one of which con-
cemed the proper way to understand interaction effects.
The desired answer was to examine the leftover effects
after freeing the cell means of everything but the inter-
action. However, Zuckerman et al. reported that about a
third of the respondents answered incorrectly, often ac-
companying their answer by the logic of simple effects or
by stating, "It's what I was taught" (p. 51). Such reve-
lations are reminiscent ofthe quote appearing in the title,
which we borrowed from Cohen's (1990, p. 1304) distil-
lation of the wisdom of a lifetime of data analysis. One of
his points was that some of what we all learned in grad-
uate school about the analysis of data can be questioned.

Cohen's paradox also helps to explain our earlier find-
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ing based on a systematic review of articles published in
leading research journals in psychology (Rosnow &
Rosenthal, 1989). In a substantial number of cases, there
were clear-cut indications of confusion in thinking about
interactions, and none of the journals surveyed was im-
mune from this problem. To be sure, the mathematical
meaning of interaction effects is unambiguous and is rou-
tinely included in textbooks of mathematical and psycho-
logical statistics. However, the problem is that many
textbooks, when explaining how to interpret interactions,
ignore the implications of the additive model on which
the analysis of variance (ANOVA) is based.

For example, such explanations may take the form of
a set of diagrams of crossed and uncrossed combinations
of group means in two-way designs. It is pointed out that
when the lines cross, this implies that an interaction is
present; if the lines do not cross, but remain parallel to
one another, this implies that there is no interaction.
There is nothing wrong with this idea, although a problem
arises when the pattern of the interaction is interpreted
solely on the basis of the configuration of group means.
Many textbooks go so far as to label the plot of group
means the "interaction," in effect creating a non sequitur
by ignoring the premise of the additive model. As a re-
sult, several generations of teachers and researchers
have become unwitting players in an Asch-type drama
with real-world consequences. That is to say, when au-
thorities insist that the sum of the parts is synonymous
with one ofthe parts, it is not surprising that impression-
able students fail to comprehend a basic distinction.

ln this article, we try once more to break this unfor-
tunate chain of conformity. We begin by reviewing the
additive model's implicit prescription for decomposing
cell means and individual measurements. We also illus-
trate a handy procedure for computing contrasts on other
people's published data to address the question or hy-
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pothesis that may be of primary interest. We then sample
some strategies for imposing substantive meaning on in-
teractions. Finally, we present a simple exercise to serve
as a check on students' understanding of the additive
model and the mathematical meaning of interaction.

ILLUSTRATION OF THE PROBLEM

Suppose a team of clinical investigators performed a
study using the 2 x 2 layout in Table 1, which represents
a between-subjects design in which male and female ther-
apists are assigned at random to male or female patients.
The dependent variable is the average rating by judges of
the effectiveness of the therapy on each patient. The re-
searchers hypothesize an ordering of the means such that
A > B > C = D. They call this predicted outcome the
"patient-by-therapist interaction" and decide that they
will test it by examining the appropriate f in a two-way
ANOVA. They perform such an analysis and report that,
having found F for the 2 x 2 interaction to be significant
at p < .05, they interpreted this result by inspecting the
group means. The reader's attention is directed to a fig-
ure (labeled "interaction effect") that plots the four
group means and, the researchers confidently assert,
shows the pattern of interaction they predicted.

Although there is nothing unusual about such a strat-
egy of data analysis, it is nevertheless based on a mis-
conception about both the mathematical meaning of in-
teraction and the additive model. According to this
model, interactions are defined, and therefore completely
described, by the leftover effects (or residuals) after re-
moving other effects contributing to the group or condi-
tion means. In the case of a two-way interaction, we need
to remove the row effects (defined for each row as the
mean of that row minus the grand mean) and the column
effects (defined for each column as the mean of that col-
umn minus the grand mean) from the overall effects.' It is
not absolutely necessary to remove the grand mean from
the overall effects, but it may be advantageous to do so.
The reason is that the grand mean adds a constant value
to the residuals, and freeing them of this constant makes
it easier to compare the absolute values of the interaction
with the absolute values of the row and column variables.
Thus, if adding up the grand mean, row effects for each

1. In higher order designs, we remove not only the row and column
effects but also other relevant effects as specified by the additive model.
In a three-way factorial, for example, each of the three two-way inter-
actions is defined by the leftover effects (i.e., residuals) after removal of
the main effects of the two factors contributing to the particular inter-
action. The three-way interaction is the set of residuals after removal of
the three main effects and the three two-way interactions. In a 2 x 2 x
2 x 2 factorial, the four-way interaction is the set of residuals after
subtracting the four main effects, six two-way interactions, and four
three-way interactions from the total of all between-conditions effects.

Table 1. 2 x

Patient sex

Female
Male

2 factorial

Therapist

Female

A
C

sex

Male

B
D

condition, and column effects for each condition repro-
duces the obtained group means, we may infer that the
interaction is zero. Alternatively, if we are unable to re-
construct the group means from these estimates, we have
an interaction to consider.

Although the researchers slept soundly, secure in the
belief of a job well done, they created a cloud of confu-
sion for students as well as research consumers. Where
exactly did the researchers go wrong? First, they claimed
to have predicted a 2 x 2 interaction when all they really
predicted was the rank ordering ofthe means. They need
not have computed a 2 x 2 ANOVA or even invoked the
concept of an interaction, but simply computed a contrast
on the four group means. Second, they waived to inspect
the group means until they felt prompted to do so by the
level of significance associated with an F lest for inter-
action in a 2 X 2 ANOVA. But the analysis of group
means is not a "Simon says" game in which one must
first ask permission of the p value for an interaction F
whether it is all right to proceed. Third, they referred to
the plot ofthe group means as "the interaction," when it
was actually a plot of the overall effects (i.e., interaction
and the main effects and grand mean that contributed to
the means). The additive model teaches us that plotting
the means in a two-way design never plots only the in-
teraction unless the main effects contributing to the group
means are exactly zero (e.g., Rosnow & Rosenthal,
1991).

BREAKING GROUP MEANS INTO COMPONENTS

To fiesh out our hypothetical example, imagine that
the researchers had accumulated composite bipolar rat-
ings of 20 male and female patients, each of whom was
independently treated by either a male or a female ther-
apist. The composite scores for the 5 patients in each
condition (cell) were as follows: A—1, 1, 2, 3, 3; B 1,
-1,0,1,1;C—0,0, -^1, -2, -2;D—0,0, - 1 , - 2 , - 2 .
Table 2 summarizes the two-way ANOVA computed by
the researchers, in which we see the F test for the inter-
action component, which they believed was a signal to
examine the group means. It is convenient to think of
contrasts as "wired-in" (i.e., inherent) in a 2 x 2 facto-
rial; that is, in this case, we would have a top-versus-
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Table 2. Summary of factorial analysis of variance

Source SS df MS

Patient sex 20 1 20 20 .0004 .75
Therapist sex 5 1 5 5 .04 .49
Patient x therapist interaction 5 1 5 5 .04 .49
Error temn 16 16 1

Note. When working with (tests, the product-moment effect size may be computed by
r = t/V;^ + df, where df = degrees of freedom for the two samples compared by /.
Because !^ = F, it follows that the product-moment effect size of F with numerator df
= 1 may be computed as r = VF/(F + cf/error), where df error = degrees of
freedom for the error term as shown in this table.

bottom-row effect; a left-versus-right-column effect; and
a row X column effect. Such contrasts are generally use-
ful, but casting these data into a 2 x 2 factorial would
seem to be a poor data-analytic procedure if all that was
of interest was the predicted ordering of group means and
not the wired-in contrasts.

Table 3 (modeled after Mosteller, Fienberg, & Rourke,
1983) demonstrates, in a concrete way, why interactions
are defined by a table of residuals and also why 2 x 2
designs are said to embody three contrasts (i.e., row,
column, and interaction). Listed in Part A are the group
means, the means of the rows and columns, the grand
mean (G), and the row and column effects (i.e., differ-
ences between the grand mean and the row and column
means). Because the grand mean is zero in this example,
the corresponding means and effects in the rows and col-
umns are equivalent. Summing the grand mean plus the
relevant row and column effects for each cell produces

Table 3. Decomposition of table of means

A. Table of means
Therapist sex

Patient sex Female Male
Row
mean

Row
effect

Female
Male

+ 2
- 1

+ 1 + 1
- 1

Column mean
Column effect

B. Table of estimates

C. Table of residuals

+ 0.5
+ 0.5

+ 1.5
-0.5

+ 0.5
-0.5

-0.5
-0.5

+ 0.5
-1.5

-0.5
+ 0.5

0 = G
0

0

Note. Estimate = grand mean (G) + row effect + column
effect; residual = group mean - estimate.

the table of estimates (i.e., estimated overall effects).
Had these been exact estimates of the observed group
means (i.e., no leftover effects), it would tell us that the
interaction component is zero. But this is not the case,
and so we turn to the table of residuals (i.e., residual =
group mean - estimate) in order to lay open the pattern
of the interaction.

What else can we learn from Table 3? First, we are
reminded that plotting the group or condition means is a
plot not only of the interaction but also of other compo-
nents contributing to the overall effects. That is, group
mean = grand mean + row effect + column effect -f-
residual (i.e., the additive model). Second, we see why
row, column, and interaction effects in a 2 x 2 design
may be said to constitute three wired-in contrasts. Con-
trasts are defined by fixed weights (lambdas), with the
stipulation that they must sum to zero (i.e., 2X = 0).
Clearly, the absolute values of the row, coiumn, and in-
teraction effects in Table 3 possess this characteristic.
Third, we see that the table of residuals implies an
X-shaped plot. Such a plot is characteristic of any non-
zero 2 x 2 interaction when (a) there are equal ns per cell
or (b) the row and column means have not been weighted
by the unequal ns per cell.^ Other patterns are possible in
more complex designs (e.g., Rosenthal & Rosnow, 1991),
but it is always true that the 2 x 2 interaction will be
X-shaped.

And finally, we see why examining the residuals un-
inflated by the grand mean makes it easier to compare
them with the absolute values of the row and column
effects. We will have more to say about interpreting in-
teractions, but perhaps the most striking feature in Table

2. The usual statistical reason for weighting is that the corresponding
ns per cell are known to be unequal in the population and we want our
sample values to reflect the naturally occurring pattern. However, if we
believe our unequal ns to be an "accident" of sampling, then it would
distort the population estimates if we weighted the row and column
means. When in doubt about whether to weight or not to weight, it
generally makes sense not to weight—which is to say to treat the cells
and marginals as (/there were equal ns per cell.
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3 is that each level of analysis tells a different story. It is
not that one story invalidates, or necessarily supersedes,
another story. It is instead that, as if looking at the world
through a prism that disperses light in different direc-
tions, we can interpret the data from different perspec-
tives. The situation is reminiscent of Tukey's (1969) ob-
servation that a "body of data can—and usually should—
be analyzed in more than one way" (p. 83). It is also
instructive to note that in absolute values, the column
factor and interaction each contributed half as much as
the row factor to the group means. This finding is illumi-
nating because it runs counter to the widely accepted
notion that once researchers obtain an interaction, they
should then regard the main effects as meaningless.
These absolute values reveal that it is quite possible to
have a meaningful main effect in the presence of interac-
tion.

BREAKING MEASUREMENTS INTO COMPONENTS

It is also instructive to consider how the additive
model provides a template for the decomposition of in-
dividual scores into their components. Because each
score can be viewed as varying around (or deviating
from) its group mean (i.e., score = group mean -I- devi-
ation), it is convenient to think of these deviations as
signifying the degree of accuracy with which individual

scores may be predicted from a knowledge of group
membership. This relationship explains why deviations
from the mean are referred to as "error" (i.e., error =
score — group mean), in that the magnitude of the devi-
ations signals how poorly one would do in predicting in-
dividual scores from a knowledge of group membership.
Given that group mean = grand mean -I- row effect -i-
column effect -I- interaction residual, it follows that each
measurement can be rewritten as score = grand mean -l-
row effect -(- column effect -I- interaction residual -i-
error.

Using this schema as a conceptual stepping-stone, Ta-
ble 4 lists for individual sampling units the grand mean,
row and column effects, and interaction residual as con-
stituted in Table 3. Error, as just noted, is defined as the
individual score minus the mean of the group in which it
is located. Beneath each column is shown the sum ofthe
squared values, and we see immediately how the SS in
Table 2 originated.

TESTING THE PREDICTED PATTERN OF MEANS

We have still not addressed the researchers' prediction
of an ordering of group means, but that can be accom-
plished with just the raw ingredients at hand. In research
journals that insist that authors comply strictly with the
American Psychological Association's (1983) publication

Table 4.

Group

A

B

C

D

2Z^

Decomposition of individual scores

Subject

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

Score =

+ 1
+ 1
+ 2
+ 3
+ 3

- 1 =
0

+ 1
+ 1

0
0

- 1
- 2 =
- 2

0
0

- 1
- 2
- 2

46

Grand
mean

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0

Row
+ effect

+ 1
+ 1
+ 1
+ 1
+ 1

+ 1
+ 1
+ 1
+ 1
+ 1

+ (-1)
+ (-1)
+ (-1)
+ (-1)
+ (-1)

+ (-1)
+ (-1)
+ (-1)
+ (-1)
+ (-1)

+ 20

+

+
-t-
+

+
+
+

+
+
+
+
+
+
+
+
+
+

Column
effect

0.5
0.5
0.5
0.5
0.5

(-0.5)
(-0.5)
(-0.5)
(-0.5)
(-0.5)

0.5
0.5
0.5
0.5
0.5

(-0.5)
(-0.5)
(-0.5)
(-0.5)
(-0.5)

5

Interaction
+ effect

+ 0.5
+ 0.5
+ 0.5
+ 0.5
+ 0.5

+ (-0.5)
+ (-0.5)
+ (-0.5)
+ (-0.5)
+ (-0.5)

+ (-0.5)
+ (-0.5)
+ (-0.5)
+ (-0.5)
+ (-0.5)

+ 0.5
+ 0.5
+ 0.5
+ 0.5
+ 0.5

+ 5

+
+
+
+

+
+
-1-
+
-t-

+
+
+
+
+
+
+
+

-1-

-1-

Error

(-1)
(-1)

0
1
1

(-1)
(-1)

0
1
1

1
1
0

(-1)
(-1)

1
1
0

(-1)
(-1)

16
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Table 5. One-way
from Table 2

Source

Between
conditions

Within
conditions

analysis

SS

30

16

of variance

df MS

3 10

16 1

reconstituted

F P

10 .0006

manual, we should be given the condition means, the
value ofthe statistical test employed, and the degrees of
freedom {df) associated with that test. The procedure we
now describe simply carves a contrast out of the overall
F for the four group means as a one-way design. Table 5
displays the overall ANOVA reconstituted from the re-
sults in Table 2, and we can now compute a contrast on
the simple effects in three easy steps:

Step 1 is to obtain the maximum possible contrast F
(MPC-F), which represents the largest possible value of F
that can be achieved by a contrast carved out of the
between-conditions SS for the numerator of F. It could
achieve this value only if all the variation among the
means tested by the overall F were associated with the
contrast computed, with nothing left over. To obtain this
value, we multiply the overall F = 10 by its numerator df
= 3 and find MPC-F = 30.

Step 2 is to compute the aggregate r̂ , which we find by
correlating the obtained group means with the lambda
weights we create to represent our prediction. In this
case, we might choose +3, +1, - 2 , - 2 as weights to
represent the prediction that A > B > C = D. Correlating
these values with the obtained group means (+ 2, 0, - 1,
-1) yields r = .9623, and the aggregate r̂  = .926.

Step 3 is to multiply the results of Steps 1 and 2 to
obtain the contrast F, which gives us F(l, 16) = 30 x .926
= 27.78; the p associated with this F is iess than .00008.
The effect-size r, computed as VF/{F + df error), is .80.̂
This jumbo-sized effect is decisive, and the associated p
suggests that it should not be dismissed as merely a
chance event.

OTHER STATEMENTS ABOUT INTERACTIONS

If we are actually interested in the interaction compo-
nent, there are different forms of statements that impose
substantive meaning on the residuals. For example, it
may be possible to clarify or accentuate the pattern ofthe
residuals by cutting away some level of a factor. There

i. This effect-size r is the partial correlation between the scores and
their contrast weights controlling for two contrasts orthogonal to the
one computed.

are several strategies that produce this kind of Occam's
razor simplification of tables of residuals.

One approach, characterized as the method of mean-
ingful differences (Rosenthal, 1987), consists of subtract-
ing one level of a factor from the other level of that factor
for any two-level factor for which the difference between
levels can be seen as conceptually meaningful. In Table 3
(Part C), by subtracting the residual in Cell B ( - 0.5) from
that in Cell A ( + 0.5), and also subtracting the residual in
Cell D ( + 0.5) from that in Cell C (-0.5), we recast the
two-way interaction as a change in a main effect due to
the introduction of a second independent variable. We
thus form a new measure, which may be described as the
"advantage" of one level of the column factor over the
other level, in this case, the advantage to patients of hav-
ing female rather than male therapists. The form of our
statement about the residuals is that the advantage of
having a female therapist is greater for female patients
(+1.0) than it is for male patients (-1.0).

An alternative approach, the method of meaningful
diagonals (Rosenthal, 1987), focuses on the diagonals of
the table of residuals if a suitable concept can be found to
describe each diagonal. With the residuals in Table 3, the
concept would be same-sex dyad (upper left to lower
right diagonal) and opposite-sex dyad (lower left to upper
right diagonal). The form of our statement about the in-
teraction is given a slightly different twist by this new
measure. That is, dyads consisting of therapists and pa-
tients of the same sex are more apt to lead to a favorable
therapeutic outcome ( + 0.5) than are opposite-sex dyads
(-0.5). Once again, we have boiled down a two-
dimensional table into a one-dimensional table.

It is, of course, possible to improvise variations on
these simplifications for use in more complex tables of
residuals. For example, another illustrative strategy uses
the difference between differences, which produces the
hnguistically most economical statement about residuals.
Although this approach is of more limited applicability
(e.g., Rosnow & Suls, 1970), it has the interesting feature
that it makes no difference whether we work with the
residuals or with the group means as surrogates of the
residuals. In both cases, the value of the two-way inter-
action equals (A - B) - (C - D). In the case of a triple
interaction, the most succinct form of statement is simply
the difference between the two difference values.

CHECKING ON STUDENTS' UNDERSTANDING
OF ANOVA

As a check on students' understanding of interaction
and the additive model, we may ask them to construct a
table of predicted values. If they can generate effects in
the rows, columns, and interactions of a table of data
they have created, we can be sure that they understand
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the basic distinction between the differences between
means and the residuals. To illustrate, suppose we asked
them to construct a 3 x 4 matrix of predicted values.
They would proceed in four steps:

1. Select an average value. They would begin by as-

signing some mean value for each cell to reflect the un-
derlying metric they have chosen. For example, they
might assign the value 5 to each cell, as shown in Part A
of Table 6.

2. Select a row effect. Assume a quadratic trend in the

Table 6. Constructing

A. Data showing the

Condition

02
03

Total

B. Data of Part A

Condition

Total

C. Data of Part B

2 4 3

Condition

"3

Total

5
5
5

15

a data table

same mean for each cell
Condition

4-2

5
5
5

15

b.

5
5
5

15

after introducing a quadratic
Condition

b,

4
1
4

15

b2

4
1
4

15

after introducing

br

6
9
6

21

D. Weights for linear
interaction effect

Condition

03
Total

E. Data of Part C
PartD

Condition

" 2

Total

^

- 1
0

+ 1
0

4-3

4
7
4

15

4-4

5
5
5

15

Total

20
20
20
60

row effect

b.

4
7
4

15

Total

16
28
16
60

a colutnn effect such that b^

Condition

4-2

6
9
6

21

* 3

1
4
1
6

and quadratic eletnents in

Condition

b2

+ 1
— 2
+ 1

0

b.

+ 1
0

0

4-4

3
6
3

12

an

4-4

- 1
+ 2
_ 1

0

Total

16
28
16
60

Total

0
0
0
0

after introducing the interaction effects of

Condition

b,

5
9
7

21

b2

1
1
7

21

by

2
4
0
6

«'4

2
8
2

12

Total

16
28
16
60
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row totals is predicted. If the students selected weights of
- 1, +2, and - 1 , they would subtract 1 from every entry
of flj, add 2 to every entry of a2, and subtract 1 from
every entry of 133. This second step is shown in Part B of
Table 6; notice that the column totals and grand total are
unchanged from Part A.

3. Select a column effect. Assume we also predicted
column effects such that foj and bj are equal to each other
and 3 units greater than b^, which, in tum, is 2 units
greater than b^. A set of weights satisfying these require-
ments is +2, +2, - 3 , and - 1 for ib,, fcj- ^3- ^"^ 64,
respectively. Therefore, the students would add 2 to ev-
ery entry of fc, and fej- subtract 3 from every entry of foj,
and subtract 1 from every entry of b^. This step is shown
in Part C of Table 6; notice that the row totals and grand
total are unchanged from Part B.

4. Select an interaction effect. Suppose we also pre-
dicted interaction effects such that conditions bj and b^
show linear trends in the row effects that are in opposite
directions to each other, whereas conditions bj and b^
show quadratic trends in the row effects that are in op-
posite directions to each other. The weights representing
these effects are shown in Part D, and adding them to the
effects built up in Part C gives us Part E. Notice that the
row, column, and grand totals remain unchanged from
PartC.

ENCOURAGING PRECISION IN SPECIFICATION

We began by making the point that many research-
ers—and, in turn, students—perennially confuse the
overall effects with the residuals when interpreting an
obtained interaction in ANOVA. However, this article
should not be viewed as an argument for encouraging
researchers and students either (a) to focus on the resid-
uals and to ignore the differences between means or (b) to
focus on the differences between means and to ignore the
residuals. If one claims an interaction, then in almost all
cases one is obliged to interpret the residuals and not
adopt the traditional mind-set of inspecting only the con-

dition means (i.e., overall effects) generated by a com-
puter. On the other hand, if all one is interested in Eire the
overall effects, one can cut to the chase and analyze them
using one or more contrasts (e.g., Rosenthal & Rosnow,
1985). Of course, it is usually prudent to accept the wis-
dom of Tukey's advice and subject the data to more than
one analysis, because this approach is cost-effective and
may spawn new insights for further testing. However,
whatever strategy one adopts, this article is basically a
plea for increased precision in the specification of re-
search results.
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